2 resultados para ÁLGEBRAS DE LIE
em Repositorio Institucional de la Universidad de El Salvador
Resumo:
Como la historia lo viene diciendo, en general los resultados importantes y trascendentales en Matemática son los capaces de vincular dos estructuras, en su esencia, totalmente distintas. En el año 1973, el matemático Noruego Marius Sophus Lie (1849-1925) estudiando propiedades de soluciones de sistemas de ecuaciones diferenciales, dio origen a las ideas que conformaron la hoy denominada Teoría de Lie, la cual plantea la relación entre geometría, álgebra y la topología, este matemático creó en gran parte la teoría de la simetría continua, y la aplicó al estudio de la geometría y las ecuaciones diferenciales. Con aportes posteriores de los matemáticos Weyl, Cartan, Chevalley, Killing, Harish Chandra y otros estructuran la teoría de Lie, se presentan en este trabajo de investigación las nociones básicas que subyacen en dicha teoría. En los primeros trabajos de Sophus Lie, la idea subyacente era construir una teoría de grupos continuos, que complementara la ya existente teoría de grupos.
Resumo:
En esta tesis se aborda el problema de obtener una versión certificada de un resultado fundamental en álgebra homológica, conocido como “Desarrollo de las álgebras y complejos de Koszul”. Las principales motivaciones de nuestro trabajo consisten en aumentar nuestro conocimiento sobre la naturaleza del álgebra homológica y topología algebraica de dicho resultado matemático, así como evaluar las distintas posibilidades que ofrecen los complejos de Koszul y álgebras de Koszul para demostrar teoremas en álgebra homológica, y a la vez las aplicaciones en álgebra homológica.