1 resultado para Bayesian Networks Elicitation GIS Integration
em Repositorio Institucional de la Universidad de Almería
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Academic Research Repository at Institute of Developing Economies (7)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (48)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (113)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CamPuce - an association for the promotion of science and humanities in African Countries (1)
- CentAUR: Central Archive University of Reading - UK (19)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (14)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (14)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (9)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (15)
- Duke University (1)
- Ecology and Society (1)
- FUNDAJ - Fundação Joaquim Nabuco (4)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (181)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Laboratório Nacional de Energia e Geologia - Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (35)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (21)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (93)
- Scielo Saúde Pública - SP (11)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (55)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (10)
- Universidade dos Açores - Portugal (3)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (57)
- Université de Montréal, Canada (3)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (93)
- University of Southampton, United Kingdom (1)
- University of Washington (4)
Resumo:
Requirement engineering is a key issue in the development of a software project. Like any other development activity it is not without risks. This work is about the empirical study of risks of requirements by applying machine learning techniques, specifically Bayesian networks classifiers. We have defined several models to predict the risk level for a given requirement using three dataset that collect metrics taken from the requirement specifications of different projects. The classification accuracy of the Bayesian models obtained is evaluated and compared using several classification performance measures. The results of the experiments show that the Bayesians networks allow obtaining valid predictors. Specifically, a tree augmented network structure shows a competitive experimental performance in all datasets. Besides, the relations established between the variables collected to determine the level of risk in a requirement, match with those set by requirement engineers. We show that Bayesian networks are valid tools for the automation of risks assessment in requirement engineering.