2 resultados para universal soil loss equation

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was developed in objecting to investigate the use and occupation of land in 1999, 2005, 2011 e 2015 and estimate soil degradation by laminar erosion and the relation with water quality in 2015 in the catchment basin of the Barro Preto river, Coronel Vivida – PR. For multitemporal analysis of use and occupation of land in the basin used in the Landsat 5, 7 and 8 images and Geographic Information System. The laminar erosion was estimated by the Universal Soil Loss Equation through the systematization of calculations of the factors that compose the equation in SPRING/INPE. The water quality of the studied river section was evaluated according to the Water Quality Idex and the Resolution CONAMA n. 357/2005. The multitemporal analysis of the use and occupation of land has demonstrated that basin is predominantly agricultural in all years studied, as well as the permanent preservation area presents it not regularized during the period in accordance with the Brazilian Forest Code in force. In relation the quantification of laminar soil erosion in the study period, the rainfall and runoff factor was estimated considering the rainfall data from 1986 to 2014 and resulted in a value of 11.573,47 MJ/ha.mm/a. The Dystrophic Red Latosol, Dystrophic Red Nitisol, Fluvisol and Leptosol soil erodibility factor were 0,0138, 0,0137, 0,0207, 0,0196 t.ha.h/ha.MJ.mm/a, respectively. The topographical factor has demonstrated that the catchment basin has the rough terrain because the moderate and moderate strong classes are dominant in the study area. The cover and management and support practice factors were estimated according to the multitemporal analysis of the use and occupation of land in the basin and the values ranged from 0,0006 to 0,0688. The soil losses by laminar erosion were simulated with agriculture areas with corn and soybeans in no-till. The soil losses with maize crop in no-till in 1999, 2005, 2011 and 2015 were 9.782,75, 10.592,71, 9.636,61 e 11.058,26 t/year, respectively, and soybeans crops in no-till were 15.140,01, 16.645,20, 14.662,14 e 17.049,85 t/year, respectively. In relation with water quality of the section studied river, the average of Water Quality Index during the season were 55,47, 53,09 and 49,72, for the first, second and third sample point, respectively. Indication a decrease in water quality since the source to the last sample point. It is concluded that the use and occupation of land in the catchment basin interferes in the water quality, as well as in soil degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the national scene, soybean crop occupies a prominent position in cultivated area and volume production, being cultivated largely in the no tillage system. This system, due to the intense traffic of machines and implements on its surface has caused soil compaction problems, which has caused the yield loss of crops. In order to minimize this effect the seeder-drill uses the systems to opening the furrow by shank or the double disc type. The use of the shank has become commonplace for allowing the disruption of the compacted surface layer, however requires greater energy demand and may cause excessive tillage in areas where there is not observed high levels of compaction. Thus, this study aimed to evaluate the effects of furrowers mechanisms and levels of soil compacting on traction requirement by a seeder-drill and on the growing and productivity of soybean in an Oxisol texture clay, in a two growing seasons. The experimental design consisted of randomized blocks with split plots with the main plots composed of four levels of soil compaction (N0 – no tillage without additional compaction, N1, N2 and N3 – no tillage subjected to compaction through two, four and six passes with tractor, respectively) corresponding to densities of soil 1.16, 1.20, 1.22 and 1.26 g cm-3, and subplots by two furrowers mechanisms (shank and double disc) with four replicates. To evaluate the average, maximum and specific traction force requested by the seeder-drill, was used a load cell, with capacity of 50 kN and sensitivity of 2 mV V-1, coupled between the tractor and seeder-drill, whose data are stored in a datalogger system model CR800 of Campbell Scientific. In addition, were evaluated the bulk density, soil mechanical resistance to penetration, sowing depth, depth and groove width, soil area mobilized, emergence speed index, emergence operation, final plant stand, stem diameter, plant height, average number of seeds per pod, weight of 1,000 seeds, number of pods per plant and crop productivity. Data were subjected to analysis of variance, the mean of furrowers were compared by Tukey test (p≤0.05), while for the factor soil compaction, polynomial regression analysis was adopted, selected models by the criterion of greater R2 and significance (p≤0.05) of equation parameters. Regardless of the crop season, penetration resistance increase as soil compaction levels up to around 0.20 m deep, and bulk density influenced the sowing quality parameters, however, did not affect the crop yield. In the first season, there was a higher productivity with the use of the shank type. In the second crop season, the shank demanded greater energetic requirement with the increase of bulk density and opposite situation with the double disc. The locking of sowing lines allow better performance of the shank to break the compacted layer.