2 resultados para power system control
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
This work presents the development and modification of techniques to reduce the effects of load variation and mains frequency deviation in repetitive controllers applied to active power filters. To minimize the effects of aperiodic signals resulting from the connection or disconnection of non-linear loads is developed a technique which recognizes linear and nonlinear loads, and operates to reset the controller only when the error due to the transition of considerable value, and the transition is from non-linear to linear load. An algorithm to adapt the gain of the repetitive controller, based on a sigmoid function adaptation, in order to minimize the effects caused by random noise in the measurement system is also used. This work also analyzes the effects of frequency variation and presents the main methods to cope with this situation. Some solutions are the change in the number of samples per period and the variation of the sampling rate. The first has the advantage of using linear design techniques and results in a time invariant system. The second method changes the sampling frequency and leads to a time variant system that demands a difficult analysis of stability. The proposed algorithms were tested using the methods of truncation of the number of samples and the method of changing the sampling rate of the system to compensate possible frequency variations of the grid. Experimental results are presented to validate the proposal.
Resumo:
Power generation from alternative sources is at present the subject of numerous research and development in science and industry. Wind energy stands out in this scenario as one of the most prominent alternative in the generation of electricity, by its numerous advantages. In research works, computer reproduction and experimental behavior of a wind turbine are very suitable tools for the development and study of new technologies and the use of wind potential of a given region. These tools generally are desired to include simulation of mechanical and electrical parameters that directly affect the energy conversion. This work presents the energy conversion process in wind systems for power generation, in order to develop a tool for wind turbine emulation testing experimental, using LabVIEW® software. The purpose of this tool is to emulate the torque developed in an axis wind turbine. The physical setup consists of a three phase induction motor and a permanent magnet synchronous generator, which are evaluated under different wind speed conditions. This tool has the objective to be flexible to other laboratory arrangements, and can be used in other wind power generation structures in real time. A modeling of the wind power system is presented, from the turbine to the electrical generator. A simulation tool is developed using Matlab/Simulink® with the purpose to pre-validate the experiment setup. Finally, the design is implemented in a laboratory setup.