4 resultados para parte aérea
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
Molybdenum is one of the essential micronutrients for soybeans, acting directly on nitrogen metabolism as enzyme cofactor of nitrogenase. Usually, this nutrient is supplied to the plants through seed treatment or foliar application. The aim of this study was to evaluate the molybdenum effects by foliar in the physiological potential of soybean seeds and verify its interference in the enzyme activities involved in nitrogen metabolism. Soybean seeds of BMX Turbo cultivar were used, produced in Erechim, RS, harvest 2013, from plants treated with the following Mo concentrations: 0; 25; 50 and 75 g ha-1, supplied through two commercial products (Biomol and Molybdate) and stored during 0 and 6 months in uncontrolled conditions. The first experiment was conducted in Seedtes Seed Analysis Laboratory in Pato Branco, PR. The used design was completely randomized in a factorial analysis 4 x 2 x 2 with four replications each. The physiological potential of the seeds was evaluated by the germination test, seedling growth, accelerated aging and emergence on the soil. The second experiment was conducted in a greenhouse, where the seeds derived from treatments with different concentrations of Mo: 0; 25; 50 and 75 g ha-1 supplied through two commercial products (Biomol and Molybdate) were grown in vases. The used design was completely randomized in a factorial analysis 4 x 2 with four replications. Evaluations were performed when the plants reached the R1 phenological stage concerning the nodulation, dry matter of root and shoot of the plants and the determination of the activity of the enzymes glutamine synthetase and glutamate synthetase and the content of total soluble proteins. The data were submitted to variance analysis and when significant they were assessed by Tukey’s test for comparison of products and seed storage and with regression study to the concentrations at 5% probability. Analyses were performed using SISVAR statistical software. The soybean seed storage under uncontrolled conditions affected the seed vigour produced with Mo, regardless of the commercial product used during production. The application of Mo through foliar positively influences the production of soya beans which presented increasing responses in the germination and vigour with the application of Mo above 25 g ha-1 . The enrichment of Mo through foliar did not affect the nodulation of plants of the next generation, however, the use of Mo above 25 g ha-1 provided an increase in the activity of enzymes involved in nitrogen metabolism as well as on the total protein content.
Resumo:
The jabuticaba fruit tree from classified in the Myrtaceae family and Plinia genre. There are about nine species of this fruit tree, that include as most important, Plinia trunciflora (jabuticaba de cabinho), naturally occurring in southwestern Paraná State, Brazil, P. cauliflora (jabuticaba Paulista or Jabuticaba Açu) and P. jaboticaba (Vell) (jabuticaba sabará), with all the over species producing fruit for the industry or fresh consumption. Nevertheless, there aren‟t commercial orchards with this culture, with highest yield part from extractive. This fact can be combined with lack of technical knowledge for the plants produce in the field. As these species are found in the forest, the first point is whether they can adapt to other light intensity conditions. The aim of this work was to identify the adaptive behavior of jabuticaba fruit seedling and tree when they were put in different light intensities and what this can be considered ideal for the growth, as well as, its influence in the leaves secondary compounds production. Two experiments were conducted, with the first involved with the study of the seedlings and the second with plants in the field. The work was carried out at Universidade Tecnológica Federal do Paraná – Câmpus Dois Vizinhos, Paraná State - Brazil. The experimental design was a completely randomized and a block design with four treatments and four replications of 10 seedlings or two plants per plot, according to nursery or orchard conditions, respectively. The treatments were base according to the light intensity. The treatments used were, 1 - full sun, similar the orchard condition, with 0% shading; 2 - side cover with shade cloth and top with transparent plastic, representing a gap forest condition; 3 - side and top cover with shade cloth, representing stage where the forest canopy is closing, focusing only indirect sunlight; 4 - side and top cover with shade cloth, simulating a closed canopy condition, with PPD (photon flux density) of 10% (90% shading); 5 - side and top cover with shade cloth, simulating a more open canopy condition with PPD 65% (35% shading). The growth and development seedling and plant characteristics were evaluated once by month, as also, during time part in the plants the secondary metabolites leaves, soil activity microbiological and the fresh and dry matter root and shoot and, root length from seedlings. For the growth and development of jabuticaba Açú Paulista seedling recommend to use of side cover with shade cloth and top with transparent plastic, representing a gap forest condition. In orchard, for the growth and development of plants jabuticaba Híbrida tree it was recommended the use of side and top cover with shade cloth of some type. For production of secondary metabolites of leaves, the plant must to be full sunlight condition orchard.
Resumo:
The use of cover crops is a fundamental strategy to the weed management in Southern Brazil. In highly infested areas, the herbicides use is increasing, which increases the costs of the crops production as well as the environmental contamination. Oat and velvet bean plants havecontrasting characteristics regarding to residues decomposition speed and the capacity to immobilize Nitrogen in the soil, providing distinct results of weeds suppression throughout the time, and therefore, requiring distinct management strategies before, during, and after the corn crop establishment. The general objective of the experiment was to evaluate the environmental dynamics of the herbicide atrazine, the corn grain yield, and the efficiency of the weed control, considering areas with distinct history regarding the use of mulching, levels of straw and rates of atrazine. For this, the experiment was carried out in two parts: in the first part, two trials with the corn crop were established, one using oat and the other using velvet bean as cover crops. The experimental design used for both field trials was randomized complete blocks arrangement with four replications. The factor A was constituted by four levels of straw (0; 0.75x; 1.5x; 3x) and the factor B was constituted by four rates of the herbicide atrazine (0; 2100; 4200; 8400 g a i. ha-1). Soil samples were collected for greenhouse trialsto determine the persistence. Atrazine leaching evaluation was performed by chromatography using samples collected over the soil profile.In the field, the weed density, the fresh and dry weight and the yield of the corn were evaluated. In the greenhouse trials, the main variables evaluated were plant height and injury caused by the herbicide toxicity. In the second part, soils with distinct covering history were sampled, and the mineralization and sorption studies, both with 14C-atrazine, were conducted in the laboratory. The experimental design was randomized complete blocks arrangement with four replications. The results from the field experiment show that the high levels of straw above ground, isolated, were not efficient to control completely the weeds, and that high levels of velvet bean`s straw decreased the corn potential yield. The greenhouse trials showed that high levels of oat straw prevent the scape of atrazine to soil, this effect of oat straw upon the herbicide availability on soil was detected up to 12 days after spraying. The half-life of atrazine sprayed over oat straw varied from 7 to 14 days after spraying, while the half-life of atrazine sprayed over velvet bean varied from 5 to 14 days after spraying. Increasing oat straw levels presents the capacity to reduce the lixiviation of atrazine in the soil profile, however, this effect was not verified when using velvet bean straw, because the herbicide was not detected in the soil profile, at 21 days after spraying. The chromatographic analysis indicate thatthe atrazine concentrates closer to the soil surface regardless of amount of straw, not being detected deeper than 8 cm in the soil. The accumulated mineralization of 14C-arazine sprayed over V. sativa is superior if compared to soils with S. cereale or non-covered soils. The sorption coefficient of atrazine is superior when sprayed over straw than over the soil.
Resumo:
The presence of weeds decreases the crop yield. Among the alternatives to reduce the crop yield loss, it can be included to increase the competitive ability of the crop and the chemical control of the weeds. A research program was developed in the course of Agronomy at Federal Technological University at Paraná, Campus Pato Branco - PR, during the years 2015/16, with the objectives evaluating if gibberellin inhibitors increase the competitive ability of bean plants, making them insensitive to the initialism, extending the period prior to weed-crop interference. Evaluate the tolerance of common bean plants to the herbicide ethoxysulfuron and investigate the existence of relationship between the plant mass and the level of tolerance of the plants to the herbicide. Evaluate the effect of increasing doses of ethoxysulfuron on morphological characteristics, yield components and grain yield of the bean cultivars IPR Tangará and IPR Andorinha. Evaluate the effect of increasing doses of ethoxysulfuron on the development of IAC Imperador and the community of weeds present in the area. Elucidate the mechanism that confers tolerance to bean plants to the herbicide ethoxysulfuron. The results indicate that gibberellin inhibitors were not effective in increasing periods of weed-crop coexistence. Trinexapac-ethyl increased 20% the grain yield of bean plants. It was observed high variability as the response of bean cultivars to the herbicide ethoxysulfuron, however, despite high doses (200 g ha-1), it was not observed death of the plants. The field results indicate that when the ethoxysulfuron dose is 83.2 g ha-1, the reduction in grain yield can reach 40% with the cultivar IPR Tangará and 30% in the cultivar IPR Andorinha. However, respectively for each cultivar cited, ethoxysulfuron at 17 and 12 g ha-1 are enough to reduce 10% of grain yield. Evaluating the control of weeds within the bean crop cultivar IAC Imperador with the herbicide ethoxysulfuron, it was observed that doses at 20 g ha-1 are enough to control soybean and Ipomoea spp. plants. But, due to the level of plant injury, the crop grain yield increase was not sufficient to match the one observed on the weed-free untreated control. The mechanism of tolerance of bean plants to ethoxysulfuron appears to be the herbicide degradation.