2 resultados para nitrogen doses
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
The animal trampling favors the soil compaction process in sheep raising and crop production integrated systems. This compression has negative effects, hindering the development of roots, the availability of nutrients, water and aeration, causing production losses, making it essential for the assessment of soil physical attributes for monitoring soil quality. Soil organic matter can be used to assess the quality of the soil, due to its relationship with the chemical, physical and biological soil properties. Conservation management system with tillage, along with systems integration between crops and livestock are being used to maintain and even increase the levels of soil organic matter. For that, a field experiment was carried out over a Oxisol clayey Alic in Guarapuava, PR, from de 2006 one. experiment sheep raising and crop production integrated systems The climate classified as Cfb .. The study was to evaluate the soil physical properties and quantify the stock of soil organic carbon and its compartmentalization in system integration crop - livestock with sheep under four nitrogen rates (0, 75, 150 and 225 kg ha-1) in the winter pasture, formed by the consortium oat (Avena strigosa) and ryegrass (Lolium multiflorum) and the effect of grazing (with and without). The soil samples blades density evaluations, total porosity, macro and micro, aggregation and carbon stocks were held in two phases: Phase livestock (after removal of the animals of the area) and phase crop (after maize cultivation). The collection of soil samples were carried out in layers of 0-0.5, 0.05-0.10, 0.10-0.20 and m. Data were subjected to analysis of variance and the hypotheses tested by the F test (p <0.05). For the quantitative effect data regression and the qualitative effect used the test medium. In non-significant regressions used the average and standard deviation treatments. The animal trampling caused an increase in bulk density in the 0.10-0.20 m layer. The dose of 225 kg N ha-1 in winter pasture increased total soil porosity at 8% compared to dose 0 kg N ha-1 in the crop stage. The grazing had no effect on soil macroporosity. GMD of aggregates in the phase after grazing the surface layer was damaged by grazing. Nitrogen rates used in the winter pasture and grazing not influence the total organic carbon stocks. The TOC is not influenced by nitrogen fertilization on grassland. The grazing increases the stock of POC in the 0.10-0.20 m layer livestock phase and cause the stock of POC in the 0-0.5 m layer in the crop stage. The MAC is not influenced by N rates applied in the pasture or by grazing.
Resumo:
The use of cover crops is a fundamental strategy to the weed management in Southern Brazil. In highly infested areas, the herbicides use is increasing, which increases the costs of the crops production as well as the environmental contamination. Oat and velvet bean plants havecontrasting characteristics regarding to residues decomposition speed and the capacity to immobilize Nitrogen in the soil, providing distinct results of weeds suppression throughout the time, and therefore, requiring distinct management strategies before, during, and after the corn crop establishment. The general objective of the experiment was to evaluate the environmental dynamics of the herbicide atrazine, the corn grain yield, and the efficiency of the weed control, considering areas with distinct history regarding the use of mulching, levels of straw and rates of atrazine. For this, the experiment was carried out in two parts: in the first part, two trials with the corn crop were established, one using oat and the other using velvet bean as cover crops. The experimental design used for both field trials was randomized complete blocks arrangement with four replications. The factor A was constituted by four levels of straw (0; 0.75x; 1.5x; 3x) and the factor B was constituted by four rates of the herbicide atrazine (0; 2100; 4200; 8400 g a i. ha-1). Soil samples were collected for greenhouse trialsto determine the persistence. Atrazine leaching evaluation was performed by chromatography using samples collected over the soil profile.In the field, the weed density, the fresh and dry weight and the yield of the corn were evaluated. In the greenhouse trials, the main variables evaluated were plant height and injury caused by the herbicide toxicity. In the second part, soils with distinct covering history were sampled, and the mineralization and sorption studies, both with 14C-atrazine, were conducted in the laboratory. The experimental design was randomized complete blocks arrangement with four replications. The results from the field experiment show that the high levels of straw above ground, isolated, were not efficient to control completely the weeds, and that high levels of velvet bean`s straw decreased the corn potential yield. The greenhouse trials showed that high levels of oat straw prevent the scape of atrazine to soil, this effect of oat straw upon the herbicide availability on soil was detected up to 12 days after spraying. The half-life of atrazine sprayed over oat straw varied from 7 to 14 days after spraying, while the half-life of atrazine sprayed over velvet bean varied from 5 to 14 days after spraying. Increasing oat straw levels presents the capacity to reduce the lixiviation of atrazine in the soil profile, however, this effect was not verified when using velvet bean straw, because the herbicide was not detected in the soil profile, at 21 days after spraying. The chromatographic analysis indicate thatthe atrazine concentrates closer to the soil surface regardless of amount of straw, not being detected deeper than 8 cm in the soil. The accumulated mineralization of 14C-arazine sprayed over V. sativa is superior if compared to soils with S. cereale or non-covered soils. The sorption coefficient of atrazine is superior when sprayed over straw than over the soil.