2 resultados para joelho
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
This work presents an application of optical fiber sensors based on Bragg gratings integrated to a transtibial prosthesis tube manufactured with a polymeric composite systrem of epoxy resin reinforced with glass fiber. The main objective of this study is to characterize the sensors applied to the gait cycle and changes in the gravity center of a transtibial amputee, trough the analysis of deformation and strengh of the transtibial prosthesis tube. For this investigation it is produced a tube of the composite material described above using the molding method of resin transfer (RTM) with four optical sensors. The prosthesis in which the original tube is replaced is classified as endoskeletal, has vacuum fitting, aluminium conector tube and carbon fiber foot cushioning. The volunteer for the tests was a man of 41 years old, 1.65 meters tall, 72 kilograms and left-handed. His amputation occurred due to trauma (surgical section is in the medial level, and was made below the left lower limb knee). He has been a transtibial prosthesis user for two years and eight months. The characterization of the optical sensors and analysis of mechanical deformation and tube resistance occurred through the gait cycle and the variation of the center of gravity of the body by the following tests: stand up, support leg without the prosthesis, support in the leg with the prosthesis, walk forward and walk backward. Besides the characterization of optical sensors during the gait cycle and the variation of the gravity center in a transtibial amputated, the results also showed a high degree of integration of the sensors in the composite and a high mechanical strength of the material.
Resumo:
Spasticity is a common disorder in people who have upper motor neuron injury. The involvement may occur at different levels. The Modified Ashworth Scale (MAS) is the most used method to measure involvement levels. But it corresponds to a subjective evaluation. Mechanomyography (MMG) is an objective technique that quantifies the muscle vibration during the contraction and stretching events. So, it may assess the level of spasticity accurately. This study aimed to investigate the correlation between spasticity levels determined by MAS with MMG signal in spastic and not spastic muscles. In the experimental protocol, we evaluated 34 members of 22 volunteers, of both genders, with a mean age of 39.91 ± 13.77 years. We evaluated the levels of spasticity by MAS in flexor and extensor muscle groups of the knee and/or elbow, where one muscle group was the agonist and one antagonist. Simultaneously the assessment by the MAS, caught up the MMG signals. We used a custom MMG equipment to register and record the signals, configured in LabView platform. Using the MatLab computer program, it was processed the MMG signals in the time domain (median energy) and spectral domain (median frequency) for the three motion axes: X (transversal), Y (longitudinal) and Z (perpendicular). For bandwidth delimitation, we used a 3rd order Butterworth filter, acting in the range of 5-50 Hz. Statistical tests as Spearman's correlation coefficient, Kruskal-Wallis test and linear correlation test were applied. As results in the time domain, the Kruskal-Wallis test showed differences in median energy (MMGME) between MAS groups. The linear correlation test showed high linear correlation between MAS and MMGME for the agonist muscle as well as for the antagonist group. The largest linear correlation occurred between the MAS and MMG ME for the Z axis of the agonist muscle group (R2 = 0.9557) and the lowest correlation occurred in the X axis, for the antagonist muscle group (R2 = 0.8862). The Spearman correlation test also confirmed high correlation for all axes in the time domain analysis. In the spectral domain, the analysis showed an increase in the median frequency (MMGMF) in MAS’ greater levels. The highest correlation coefficient between MAS and MMGMF signal occurred in the Z axis for the agonist muscle group (R2 = 0.4883), and the lowest value occurred on the Y axis for the antagonist group (R2 = 0.1657). By means of the Spearman correlation test, the highest correlation occurred between the Y axis of the agonist group (0.6951; p <0.001) and the lowest value on the X axis of the antagonist group (0.3592; p <0.001). We conclude that there was a significantly high correlation between the MMGME and MAS in both muscle groups. Also between MMG and MAS occurred a significant correlation, however moderate for the agonist group, and low for the antagonist group. So, the MMGME proved to be more an appropriate descriptor to correlate with the degree of spasticity defined by the MAS.