2 resultados para beverages
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
The application of roasted coffee oil directly on freeze dried soluble coffee is used to minimize the formation of fine poder which adhere on the glass packaging, which results in a negative visual appearance, as well as contributes to the aromatic impact when opening the packaging. The coffee oil is considered a high cost product obtained from Arabica coffee beans, previosly selected and roasted, by mechanical press. In Brazil the coffee culture and marketing results in the selection of the beans by type of defects and beverage, the volume of exportation works with types of coffee beans with low quantity of defects resulting in a large volume of defective coffee beans trading on the domestic market. Nevertheless, coffees which present defective grains like green, black-green beans present differences in the final flavor of the roasted coffees. The aim of this study was to evaluate the chemical composition of the oils extracted from grains classified as normal, green and black-green, at natural and roasted conditions. The oil was obtained by cold extraction using solvents of different polarities, and yield was calculated as well as its fatty acid composition. The oil of the roasted defective coffee grains was also used to prepare drinks of lyophilized soluble coffee in order to verify if jugdes were able to differenciate the sensory caracteristics of the beverages, in comparison to the product prepared using commercial oil obtained by mechanical pressing. Samples of oil obtained from defective grains showed similar extraction yields compared to hot extraction. Cromatographs of oils of the deffective grains did not showed differences compared to normal grains. In relation to the sensory analysis of the soluble coffee beverages, it was verified that when applying oils of light roasted black-green beans or oils of medium and dark roasted green beans obtained with rapid process, judges had more difficulties to distinguish differences between samples. Economic viability demonstrated that with the actual prices of the coffee beans, the use of defective beans could reduce in 64% the costs of the raw beans.
Resumo:
The routine analysis for quantization of organic acids and sugars are generally slow methods that involve the use and preparation of several reagents, require trained professional, the availability of special equipment and is expensive. In this context, it has been increasing investment in research whose purpose is the development of substitutive methods to reference, which are faster, cheap and simple, and infrared spectroscopy have been highlighted in this regard. The present study developed multivariate calibration models for the simultaneous and quantitative determination of ascorbic acid, citric, malic and tartaric and sugars sucrose, glucose and fructose, and soluble solids in juices and fruit nectars and classification models for ACP. We used methods of spectroscopy in the near infrared (Near Infrared, NIR) in association with the method regression of partial least squares (PLS). Were used 42 samples between juices and fruit nectars commercially available in local shops. For the construction of the models were performed with reference analysis using high-performance liquid chromatography (HPLC) and refractometry for the analysis of soluble solids. Subsequently, the acquisition of the spectra was done in triplicate, in the spectral range 12500 to 4000 cm-1. The best models were applied to the quantification of analytes in study on natural juices and juice samples produced in the Paraná Southwest Region. The juices used in the application of the models also underwent physical and chemical analysis. Validation of chromatographic methodology has shown satisfactory results, since the external calibration curve obtained R-square value (R2) above 0.98 and coefficient of variation (%CV) for intermediate precision and repeatability below 8.83%. Through the Principal Component Analysis (PCA) was possible to separate samples of juices into two major groups, grape and apple and tangerine and orange, while for nectars groups separated guava and grape, and pineapple and apple. Different validation methods, and pre-processes that were used separately and in combination, were obtained with multivariate calibration models with average forecast square error (RMSEP) and cross validation (RMSECV) errors below 1.33 and 1.53 g.100 mL-1, respectively and R2 above 0.771, except for malic acid. The physicochemical analysis enabled the characterization of drinks, including the pH working range (variation of 2.83 to 5.79) and acidity within the parameters Regulation for each flavor. Regression models have demonstrated the possibility of determining both ascorbic acids, citric, malic and tartaric with successfully, besides sucrose, glucose and fructose by means of only a spectrum, suggesting that the models are economically viable for quality control and product standardization in the fruit juice and nectars processing industry.