4 resultados para Velocidade de Processamento

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a proposal of speed servomechanisms without the use of mechanical sensors (sensorless) using induction motors. A comparison is performed and propose techniques for pet rotor speed, analyzing performance in different conditions of speed and load. For the determination of control technique, initially, is performed an analysis of the technical literature of the main control and speed estimation used, with their characteristics and limitations. The proposed technique for servo sensorless speed induction motor uses indirect field-oriented control (IFOC), composed of four controllers of the proportional-integral type (PI): rotor flux controller, speed controller and current controllers in the direct and quadrature shaft. As the main focus of the work is in the speed control loop was implemented in Matlab the recursive least squares algorithm (RLS) for identification of mechanical parameters, such as moment of inertia and friction coefficient. Thus, the speed of outer loop controller gains can be self adjusted to compensate for any changes in the mechanical parameters. For speed estimation techniques are analyzed: MRAS by rotóricos fluxes MRAS by counter EMF, MRAS by instantaneous reactive power, slip, locked loop phase (PLL) and sliding mode. A proposition of estimation in sliding mode based on speed, which is performed a change in rotor flux observer structure is displayed. To evaluate the techniques are performed theoretical analyzes in Matlab simulation environment and experimental platform in electrical machinery drives. The DSP TMS320F28069 was used for experimental implementation of speed estimation techniques and check the performance of the same in a wide speed range, including load insertion. From this analysis is carried out to implement closed-loop control of sensorless speed IFOC structure. The results demonstrated the real possibility of replacing mechanical sensors for estimation techniques proposed and analyzed. Among these, the estimator based on PLL demonstrated the best performance in various conditions, while the technique based on sliding mode has good capacity estimation in steady state and robustness to parametric variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The textile industry generates a large volume of high organic effluent loading whoseintense color arises from residual dyes. Due to the environmental implications caused by this category of contaminant there is a permanent search for methods to remove these compounds from industrial waste waters. The adsorption alternative is one of the most efficient ways for such a purpose of sequestering/remediation and the use of inexpensive materials such as agricultural residues (e.g., sugarcane bagasse) and cotton dust waste (CDW) from weaving in their natural or chemically modified forms. The inclusion of quaternary amino groups (DEAE+) and methylcarboxylic (CM-) in the CDW cellulosic structure generates an ion exchange capacity in these formerly inert matrix and, consequently, consolidates its ability for electrovalent adsorption of residual textile dyes. The obtained ionic matrices were evaluated for pHpcz, the retention efficiency for various textile dyes in different experimental conditions, such as initial concentration , temperature, contact time in order to determine the kinetic and thermodynamic parameters of adsorption in batch, turning comprehensive how does occur the process, then understood from the respective isotherms. It was observed a change in the pHpcz for CM--CDW (6.07) and DEAE+-CDW (9.66) as compared to the native CDW (6.46), confirming changes in the total surface charge. The ionized matrices were effective for removing all evaluated pure or residual textile dyes under various tested experimental conditions. The kinetics of the adsorption process data had best fitted to the model a pseudosecond order and an intraparticle diffusion model suggested that the process takes place in more than one step. The time required for the system to reach equilibrium varied according to the initial concentration of dye, being faster in diluted solutions. The isotherm model of Langmuir was the best fit to the experimental data. The maximum adsorption capacity varied differently for each tested dye and it is closely related to the interaction adsorbent/adsorbate and dye chemical structure. Few dyes obtained a linear variation of the balance ka constant due to the inversion of temperature and might have influence form their thermodynamic behavior. Dyes that could be evaluated such as BR 18: 1 and AzL, showed features of an endothermic adsorption process (ΔH° positive) and the dye VmL presented exothermic process characteristics (ΔH° negative). ΔG° values suggested that adsorption occurred spontaneously, except for the BY 28 dye, and the values of ΔH° indicated that adsorption occurred by a chemisorption process. The reduction of 31 to 51% in the biodegradability of the matrix after the dye adsorption means that they must go through a cleaning process before being discarded or recycled, and the regeneration test indicates that matrices can be reused up to five times without loss of performance. The DEAE+-CDW matrix was efficient for the removal of color from a real textile effluent reaching an UV-Visible spectral area decrease of 93% when applied in a proportion of 15 g ion exchanger matrix L-1 of colored wastewater, even in the case of the parallel presence of 50 g L-1 of mordant salts in the waste water. The wide range of colored matter removal by the synthesized matrices varied from 40.27 to 98.65 mg g-1 of ionized matrix, obviously depending in each particular chemical structure of the dye upon adsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of fluid behavior in multiphase flow is very relevant to guarantee system safety. The use of equipment to describe such behavior is subjected to factors such as the high level of investments and of specialized labor. The application of image processing techniques to flow analysis can be a good alternative, however, very little research has been developed. In this subject, this study aims at developing a new approach to image segmentation based on Level Set method that connects the active contours and prior knowledge. In order to do that, a model shape of the targeted object is trained and defined through a model of point distribution and later this model is inserted as one of the extension velocity functions for the curve evolution at zero level of level set method. The proposed approach creates a framework that consists in three terms of energy and an extension velocity function λLg(θ)+vAg(θ)+muP(0)+θf. The first three terms of the equation are the same ones introduced in (LI CHENYANG XU; FOX, 2005) and the last part of the equation θf is based on the representation of object shape proposed in this work. Two method variations are used: one restricted (Restrict Level Set - RLS) and the other with no restriction (Free Level Set - FLS). The first one is used in image segmentation that contains targets with little variation in shape and pose. The second will be used to correctly identify the shape of the bubbles in the liquid gas two phase flows. The efficiency and robustness of the approach RLS and FLS are presented in the images of the liquid gas two phase flows and in the image dataset HTZ (FERRARI et al., 2009). The results confirm the good performance of the proposed algorithm (RLS and FLS) and indicate that the approach may be used as an efficient method to validate and/or calibrate the various existing equipment used as meters for two phase flow properties, as well as in other image segmentation problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a platform to the conditioning, digitizing, visualization and recording of the EMG signals was developed. After the acquisition, the analysis can be done by signal processing techniques. The platform consists of two modules witch acquire electromyography (EMG) signals by surface electrodes, limit the interest frequency band, filter the power grid interference and digitalize the signals by the analogue-to- digital converter of the modules microcontroller. Thereby, the data are sent to the computer by the USB interface by the HID specification, displayed in real-time in graphical form and stored in files. As processing resources was implemented the operations of signal absolute value, the determination of effective value (RMS), Fourier analysis, digital filter (IIR) and the adaptive filter. Platform initial tests were performed with signal of lower and upper limbs with the aim to compare the EMG signal laterality. The open platform is intended to educational activities and academic research, allowing the addition of other processing methods that the researcher want to evaluate or other required analysis.