2 resultados para Urea foliar application

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molybdenum is one of the essential micronutrients for soybeans, acting directly on nitrogen metabolism as enzyme cofactor of nitrogenase. Usually, this nutrient is supplied to the plants through seed treatment or foliar application. The aim of this study was to evaluate the molybdenum effects by foliar in the physiological potential of soybean seeds and verify its interference in the enzyme activities involved in nitrogen metabolism. Soybean seeds of BMX Turbo cultivar were used, produced in Erechim, RS, harvest 2013, from plants treated with the following Mo concentrations: 0; 25; 50 and 75 g ha-1, supplied through two commercial products (Biomol and Molybdate) and stored during 0 and 6 months in uncontrolled conditions. The first experiment was conducted in Seedtes Seed Analysis Laboratory in Pato Branco, PR. The used design was completely randomized in a factorial analysis 4 x 2 x 2 with four replications each. The physiological potential of the seeds was evaluated by the germination test, seedling growth, accelerated aging and emergence on the soil. The second experiment was conducted in a greenhouse, where the seeds derived from treatments with different concentrations of Mo: 0; 25; 50 and 75 g ha-1 supplied through two commercial products (Biomol and Molybdate) were grown in vases. The used design was completely randomized in a factorial analysis 4 x 2 with four replications. Evaluations were performed when the plants reached the R1 phenological stage concerning the nodulation, dry matter of root and shoot of the plants and the determination of the activity of the enzymes glutamine synthetase and glutamate synthetase and the content of total soluble proteins. The data were submitted to variance analysis and when significant they were assessed by Tukey’s test for comparison of products and seed storage and with regression study to the concentrations at 5% probability. Analyses were performed using SISVAR statistical software. The soybean seed storage under uncontrolled conditions affected the seed vigour produced with Mo, regardless of the commercial product used during production. The application of Mo through foliar positively influences the production of soya beans which presented increasing responses in the germination and vigour with the application of Mo above 25 g ha-1 . The enrichment of Mo through foliar did not affect the nodulation of plants of the next generation, however, the use of Mo above 25 g ha-1 provided an increase in the activity of enzymes involved in nitrogen metabolism as well as on the total protein content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The knowledge of molybdenum application in legumes on the availability of N, by BNF, increased enzymatic activity and the residual effect caused on crops growth and yield can contribute to the greater scientific understanding involved in green manure processes. The aim of this study was to evaluate the Mo application and the N from Crotalaria juncea and Canavalia ensiformis green manures on common bean performance. Were conducted field experiments for the crops succession system (green manures - common bean) and laboratory essays for the enzymatic activities. Green manure production was installed in a factorial arrangement 2 x 4, with two green manure legumes species, sunnhemp (Crotalaria juncea) and jack beans (Canavalia ensiformis), and four Mo doses (0, 40, 80, 120 g ha-1) in the form of sodium molybdate (Na2MoO4), foliar applied, in a randomized block design with four replicates. For succession crop (common bean) additional treatment was added, beans grown without any fertilization, following the same experimental design from the previous crop. The dry matter decomposition and the N mineralization of green manure were monitored through collection of residues over time, by using the litter bags method. In laboratory were carried out tests of nitrate reductase activity in green manures and common beans at 90 and 66 days after sowing, respectively. The sunnhemp responded linearly positively to the application of Mo as the dry matter and N accumulation. While the jack beans presented a negative quadratic response for dry matter and there was no adjustment of regression models to N. The jack beans showed a higher decomposition rate and N mineralization compared to sunnhemp. The half lives for decomposing 50% of dry matter on the soil was 123 and 104 days to sunnhemp and jack beans, respectively, and 50% of N present in the residues was mineralized at 93 and 85 days. In common bean, differed from the control for number of pods the dose of 40 g ha-1 of Mo in both species of green manures and the dose 80 g ha-1 of Mo in jack beans. For number of grains only in sunnhemp on the dose of 40 g ha-1 of Mo differ from the control. The nitrate reductase activity was influenced by developmental stage of green manure species. In common bean, the activity of nitrate reductase was up to three times higher than the dose 0 g ha-1 of Mo compared to treatment with application of Mo in both species. There was no effect of Mo doses or species of green manure on common bean yield.