3 resultados para Sistema de visão computacional

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Humans have a high ability to extract visual data information acquired by sight. Trought a learning process, which starts at birth and continues throughout life, image interpretation becomes almost instinctively. At a glance, one can easily describe a scene with reasonable precision, naming its main components. Usually, this is done by extracting low-level features such as edges, shapes and textures, and associanting them to high level meanings. In this way, a semantic description of the scene is done. An example of this, is the human capacity to recognize and describe other people physical and behavioral characteristics, or biometrics. Soft-biometrics also represents inherent characteristics of human body and behaviour, but do not allow unique person identification. Computer vision area aims to develop methods capable of performing visual interpretation with performance similar to humans. This thesis aims to propose computer vison methods which allows high level information extraction from images in the form of soft biometrics. This problem is approached in two ways, unsupervised and supervised learning methods. The first seeks to group images via an automatic feature extraction learning , using both convolution techniques, evolutionary computing and clustering. In this approach employed images contains faces and people. Second approach employs convolutional neural networks, which have the ability to operate on raw images, learning both feature extraction and classification processes. Here, images are classified according to gender and clothes, divided into upper and lower parts of human body. First approach, when tested with different image datasets obtained an accuracy of approximately 80% for faces and non-faces and 70% for people and non-person. The second tested using images and videos, obtained an accuracy of about 70% for gender, 80% to the upper clothes and 90% to lower clothes. The results of these case studies, show that proposed methods are promising, allowing the realization of automatic high level information image annotation. This opens possibilities for development of applications in diverse areas such as content-based image and video search and automatica video survaillance, reducing human effort in the task of manual annotation and monitoring.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this work is to demonstrate and to assess a simple algorithm for automatic estimation of the most salient region in an image, that have possible application in computer vision. The algorithm uses the connection between color dissimilarities in the image and the image’s most salient region. The algorithm also avoids using image priors. Pixel dissimilarity is an informal function of the distance of a specific pixel’s color to other pixels’ colors in an image. We examine the relation between pixel color dissimilarity and salient region detection on the MSRA1K image dataset. We propose a simple algorithm for salient region detection through random pixel color dissimilarity. We define dissimilarity by accumulating the distance between each pixel and a sample of n other random pixels, in the CIELAB color space. An important result is that random dissimilarity between each pixel and just another pixel (n = 1) is enough to create adequate saliency maps when combined with median filter, with competitive average performance if compared with other related methods in the saliency detection research field. The assessment was performed by means of precision-recall curves. This idea is inspired on the human attention mechanism that is able to choose few specific regions to focus on, a biological system that the computer vision community aims to emulate. We also review some of the history on this topic of selective attention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power generation from alternative sources is at present the subject of numerous research and development in science and industry. Wind energy stands out in this scenario as one of the most prominent alternative in the generation of electricity, by its numerous advantages. In research works, computer reproduction and experimental behavior of a wind turbine are very suitable tools for the development and study of new technologies and the use of wind potential of a given region. These tools generally are desired to include simulation of mechanical and electrical parameters that directly affect the energy conversion. This work presents the energy conversion process in wind systems for power generation, in order to develop a tool for wind turbine emulation testing experimental, using LabVIEW® software. The purpose of this tool is to emulate the torque developed in an axis wind turbine. The physical setup consists of a three phase induction motor and a permanent magnet synchronous generator, which are evaluated under different wind speed conditions. This tool has the objective to be flexible to other laboratory arrangements, and can be used in other wind power generation structures in real time. A modeling of the wind power system is presented, from the turbine to the electrical generator. A simulation tool is developed using Matlab/Simulink® with the purpose to pre-validate the experiment setup. Finally, the design is implemented in a laboratory setup.