4 resultados para Sistema de plantio direto

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the national scene, soybean crop occupies a prominent position in cultivated area and volume production, being cultivated largely in the no tillage system. This system, due to the intense traffic of machines and implements on its surface has caused soil compaction problems, which has caused the yield loss of crops. In order to minimize this effect the seeder-drill uses the systems to opening the furrow by shank or the double disc type. The use of the shank has become commonplace for allowing the disruption of the compacted surface layer, however requires greater energy demand and may cause excessive tillage in areas where there is not observed high levels of compaction. Thus, this study aimed to evaluate the effects of furrowers mechanisms and levels of soil compacting on traction requirement by a seeder-drill and on the growing and productivity of soybean in an Oxisol texture clay, in a two growing seasons. The experimental design consisted of randomized blocks with split plots with the main plots composed of four levels of soil compaction (N0 – no tillage without additional compaction, N1, N2 and N3 – no tillage subjected to compaction through two, four and six passes with tractor, respectively) corresponding to densities of soil 1.16, 1.20, 1.22 and 1.26 g cm-3, and subplots by two furrowers mechanisms (shank and double disc) with four replicates. To evaluate the average, maximum and specific traction force requested by the seeder-drill, was used a load cell, with capacity of 50 kN and sensitivity of 2 mV V-1, coupled between the tractor and seeder-drill, whose data are stored in a datalogger system model CR800 of Campbell Scientific. In addition, were evaluated the bulk density, soil mechanical resistance to penetration, sowing depth, depth and groove width, soil area mobilized, emergence speed index, emergence operation, final plant stand, stem diameter, plant height, average number of seeds per pod, weight of 1,000 seeds, number of pods per plant and crop productivity. Data were subjected to analysis of variance, the mean of furrowers were compared by Tukey test (p≤0.05), while for the factor soil compaction, polynomial regression analysis was adopted, selected models by the criterion of greater R2 and significance (p≤0.05) of equation parameters. Regardless of the crop season, penetration resistance increase as soil compaction levels up to around 0.20 m deep, and bulk density influenced the sowing quality parameters, however, did not affect the crop yield. In the first season, there was a higher productivity with the use of the shank type. In the second crop season, the shank demanded greater energetic requirement with the increase of bulk density and opposite situation with the double disc. The locking of sowing lines allow better performance of the shank to break the compacted layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally in no-tillage systems, fertilization is done to the catch crop. In general nutrient cycling in crop systems has not been treated as an important tool in the process of nutrient supplying for plants. The type and the condition in which vegetable residuesis decomposed can affect the efficiency of nutrient cycling.This study assessed the effect of anticipated nitrogen fertilization in crop-livestock systems on cultivated cornproduction, rate ofnutrient release from plant residue, and theN-minerallevels of soil. The study was carried out in the city Abelardo Luz (SC) in a Clayey Oxisol. The experimental design was a randomized block design with three replications. The treatments were arranged in a 2 x 2 factorial arrangement. The first factor was N Fertilization Time: in the N-Pasture level, nitrogen (200 kg ha-1 N) and N-Grains level, no nitrogen was applied. The second factor was the Grazing Height, characterized by two sward heights of oat at 15 cm (Low Height Pasture) and at 30 cm (High Height Pasture). Corn hybrid ‘Máximus’ was sowed in 10thOctober, 31 days after the removal of animals. In the twelve resulting plots from the combination of treatments on pasture phase (N Fertilization Time x Grazing Height) rates of N-fertilizer (0, 100, 200 e 300 Kg ha-1 of N) as urea were allocated in the split plot.We conclude that anticipated N fertilization of winter cover crop pasture to provide high-quality forage and carry-over N to the subsequent corn crop and may eventually replace side drees nitrogen fertilization on corn and can improve overall N fertilizer efficiency use in integrated crop-livestock systems.The rate of K release from plant residues is very fast, releasing large quantities in the first days after plant desiccation.Despite of considerably high nitrogen dose used in both the pasture and at the grain crop it was not observed nitrate leaching risks during the study period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The animal trampling favors the soil compaction process in sheep raising and crop production integrated systems. This compression has negative effects, hindering the development of roots, the availability of nutrients, water and aeration, causing production losses, making it essential for the assessment of soil physical attributes for monitoring soil quality. Soil organic matter can be used to assess the quality of the soil, due to its relationship with the chemical, physical and biological soil properties. Conservation management system with tillage, along with systems integration between crops and livestock are being used to maintain and even increase the levels of soil organic matter. For that, a field experiment was carried out over a Oxisol clayey Alic in Guarapuava, PR, from de 2006 one. experiment sheep raising and crop production integrated systems The climate classified as Cfb .. The study was to evaluate the soil physical properties and quantify the stock of soil organic carbon and its compartmentalization in system integration crop - livestock with sheep under four nitrogen rates (0, 75, 150 and 225 kg ha-1) in the winter pasture, formed by the consortium oat (Avena strigosa) and ryegrass (Lolium multiflorum) and the effect of grazing (with and without). The soil samples blades density evaluations, total porosity, macro and micro, aggregation and carbon stocks were held in two phases: Phase livestock (after removal of the animals of the area) and phase crop (after maize cultivation). The collection of soil samples were carried out in layers of 0-0.5, 0.05-0.10, 0.10-0.20 and m. Data were subjected to analysis of variance and the hypotheses tested by the F test (p <0.05). For the quantitative effect data regression and the qualitative effect used the test medium. In non-significant regressions used the average and standard deviation treatments. The animal trampling caused an increase in bulk density in the 0.10-0.20 m layer. The dose of 225 kg N ha-1 in winter pasture increased total soil porosity at 8% compared to dose 0 kg N ha-1 in the crop stage. The grazing had no effect on soil macroporosity. GMD of aggregates in the phase after grazing the surface layer was damaged by grazing. Nitrogen rates used in the winter pasture and grazing not influence the total organic carbon stocks. The TOC is not influenced by nitrogen fertilization on grassland. The grazing increases the stock of POC in the 0.10-0.20 m layer livestock phase and cause the stock of POC in the 0-0.5 m layer in the crop stage. The MAC is not influenced by N rates applied in the pasture or by grazing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proper use of management strategies, such as grazing intensity and nitrogen fertilization are primordial to the success of integrated crop-livestock system. Several studies have demonstrated the influence of grazing intensity and nitrogen fertilization on dynamics of forage production and nutrient cycling. However, most this researches studying these strategies in isolation and little is known about the interaction of these factors in the management of an integrated crop-livestock system. In this context, the aim of this study is to determine the best management strategy involving sward height and nitrogen fertilization, permitting greater forage production and improved efficiency in the use of nitrogen soil by a black oat ‘BRS 139’ plus ryegrass ‘Barjumbo’ pasture in integrated crop-livestock system. The experiment was realized in Abelardo Luz – SC, in an area of 14 ha, where has been conducted an experiment in long term with integrated crop-livestock system under no-tillage since 2012. The experimental design is a randomized block design with three replications in a factorial design (2x2), the first factor was the grazing intensity (high and low), characterized by two sward height management (10 and 25 cm), and the second included the time factor application of N in the system: N applied on pasture (N-pasture) and N applied on the culture of grain (N-grain), at dose of 200 kg N ha stocking and variable stocking rate. The previous crop to pasture was corn. The nitrogen fertilization of pasture increased tiller density, forage density, participation of ryegrass ‘Barjumbo’ and percentage of ryegrass leaves in forage mass. Forage mass was less at low sward height on average, however the percentage of ryegrass ‘Barjumbo’ and rye leaves was greater and dead material was lower in this treatment. With nitrogen fertilization of pasture it was possible to double the amount of forage accumulated in periods with further development of ryegrass, furthermore, the total production of DM was increased in 38.4% and the shoot N concentration in 28.6%. When the nitrogen fertilization is applied in pasture, it is possible to keep black oat ‘BRS 139’ plus ryegrass ‘Barjumbo’ pasture with an average sward height of 11 cm. The residual effect of N applied at corn was not sufficient to meet the nutritional needs of pasture and the forage production was affected by periods with N deficiency, while a single application of 200 kg N ha was sufficient to meet the N requirements throughout the forage accumulation period. The black oat ‘BRS 139’ plus ryegrass ‘Barjumbo’ pasture is efficient in use and recovery of the nitrogen applied in both treatments of sward height.