3 resultados para Simulação de reservatório

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centrifugal pumps are vastly used in many industrial applications. Knowledge of how these components behave in several circumstances is crucial for the development of more efficient and, therefore, less expensive pumping installations. The combination of multiple impellers, vaned diffusers and a volute might introduce several complex flow characteristics that largely deviate from regular inviscid pump flow theory. Computational Fluid Dynamics can be very helpful to extract information about which physical phenomena are involved in such flows. In this sense, this work performs a numerical study of the flow in a two-stage centrifugal pump (Imbil ITAP 65-330/2) with a vaned diffuser and a volute. The flow in the pump is modeled using the software Ansys CFX, by means of a multi-block, transient rotor-stator technique, with structured grids for all pump parts. The simulations were performed using water and a mixture of water and glycerin as work fluids. Several viscosities were considered, in a range between 87 and 720 cP. Comparisons between experimental data obtained by Amaral (2007) and numerical head curves showed a good agreement, with an average deviation of 6.8% for water. The behavior of velocity, pressure and turbulence kinetic energy fields was evaluated for several operational conditions. In general, the results obtained by this work achieved the proposed goals and are a significant contribution to the understanding of the flow studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The faunal inventory of the macroinvertebrate community is important to the environmental assessment, since this biota is sensitive to human disturbance. The reservoir of Rio Verde, located on the first plateau of Paraná, is inserted into an agricultural region with several forest fragments Araucaria. The aim of this study was to evaluate the environmental integrity of the reservoir through ecological indexes of macroinvertebrate community benthic and associated with macrophytes. Five sampling points were defined in the study area, which comprise distinct microhabitats in the basin. There were four sampling campaigns, each by weather station: Spring (2014); Summer (2015); Autumn (2015) and Winter (2015). In each sample were measured abiotic various parameters in the field and be collected water samples for nutrient analysis in the laboratory. The macroinvertebrates were collected in triplicate at adapted Macan method using mesh sieve 1 mm and CPUE (catch per unit effort) for 20 minutes. In order to pellet sample was used a dredger model Petersen 2L. Still in the field, by season, samples were collected from macrophytes Myriophyllum aquaticum (Vell) Verdc. and Potamogeton montevidensis A. Benn. in triplicates in the fluvial region of the reservoir, to analyze the associated fractal dimension and macrofauna. For this we used a PVC sampler specific volume 0.025 m3. the following ecological descriptors were calculated in each case: abundance, wealth tax, wealth Margalef, Shannon-Wiener diversity, evenness evenness through the Past software. The index Biological Monitoring Working Party (BMWP) for monitoring sampling points was also calculated. Regarding the statistical analysis, we used the analysis of PERMANOVA to compare points and seasons and canonical correspondence analysis (CCoA) for variables. Regarding M. aquaticum and P. montevidensis it was not verified difference to the average associated macroinvertebrates. However there was a difference for abundance of organisms in the fractal dimension and biomass of specimens. M. aquaticum is more complex and took more macrofauna in relation to P. montevidensis. Regarding the monitoring of the reservoir, it showed up mesotrophic with moderate nutrient concentrations and within the regulatory limits. Benthic macrofauna showed statistical differences in relation to the reservoir region, sample point and temporal variation. The BMWP index showed that the river region has the highest biotic integrity (in all samples above 70 points), and the ecological descriptors of wealth and Margalef diversity of Shannon- Wiener higher. In point 4 (dam downstream) were recorded evidence of possible impacts due to lower wealth and BMWP index which resulted in a questionable quality water. New approaches are needed to focus on the aquatic community in the best understanding of this ecosystem and also with a view to environmental preservation of the Green River Basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work is presented mixed convection heat transfer inside a lid-driven cavity heated from below and filled with heterogeneous and homogeneous porous medium. In the heterogeneous approach, the solid domain is represented by heat conductive equally spaced blocks; the fluid phase surrounds the blocks being limited by the cavity walls. The homogeneous or pore-continuum approach is characterized by the cavity porosity and permeability. Generalized mass, momentum and energy conservation equations are obtained in dimensionless form to represent both the continuum and the pore-continuum models. The numerical solution is obtained via the finite volume method. QUICK interpolation scheme is set for numerical treatment of the advection terms and SIMPLE algorithm is applied for pressure-velocity coupling. Aiming the laminar regime, the flow parameters are kept in the range of 102≤Re≤103 and 103≤Ra≤106 for both the heterogeneous and homogeneous approaches. In the tested configurations for the continuous model, 9, 16, 36, and 64 blocks are considered for each combination of Re and Ra being the microscopic porosity set as constant φ=0,64 . For the pore-continuum model the Darcy number (Da) is set according to the number of blocks in the heterogeneous cavity and the φ. Numerical results of the comparative study between the microscopic and macroscopic approaches are presented. As a result, average Nusselt number equations for the continuum and the pore continuum models as a function of Ra and Re are obtained.