3 resultados para SILVICULTURA
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
CAPES
Resumo:
Scientific research in forest production technology area search techniques that increase production per unit area, with high economic viability and reducing environmental impacts. When dealing with forest plantations, studies are needed in the production of biomass and its nutrient content, and these are data parameters for planning the environmental implications of different intensities of forest harvesting. Given the above, this study aimed to elucidate the production and export of biomass and nutrients for two species of the genus Eucalyptus (E. grandis and E. urophylla) grown in the southwestern region of Parana. For this, it was evaluated: the stock of biomass and nutrients in eucalyptus (wood, bark, branches and leaves) at 60 months of age; the export rate of nutrients; the calorific value and economic viability. The biomass and the largest eucalyptus nutrient stocks are predominantly allocated to the stem (wood + bark). The components of biomass showed different chemical compositions, generally being higher in the leaves and bark and lower in wood and branches components. As for the calorific value, the leaves had its calorific value statistically superior than the other fractions, followed by branches, wood and bark. The organic carbon content (C.O.) is directly connected to the calorific value, and the calorific value increases as its content increase. The wood had the highest nutrient use efficiency values, something highly desirable and of great interest to forestry. The leaves showed smaller nutrient utilization efficiency values, with the exception of Ca and Mg that were smaller in the bark, indicating the importance of maintaining these components in the soil after harvest. The wood fraction presents the biomass lower cost when considering the replacement of nutrients exported by its biomass. On the other hand, the leaf fraction showed NPK higher cost of replacement.
Resumo:
The scientific research in seed technology is based on techniques that aim the reduction of costs and time, standardization, improvement and establishment of analytical methods while maintaining a high level of reliability of the results. This study sought to elucidate the reliability of electrical conductivity and pH of the exudate compared to the classic germination test, which was developed in two separate studies, however interrelated with each other, as to their final goals. The experimental material of this study consisted of seeds of the species Aspidosperma parvifolium (guatambu), Aspidosperma polyneuron (peroba-rosa), Cabralea canjerana (canjerana), Cariniana legalis (jequitibá), Gallesia integrifolia (pau-d'alho), Handroanthus chrysotrichus (ipê-amarelo), Lonchocarpus campestris (rabo-de-bugio) and Pterogyne nitens (amendoim-do-campo). The physiological quality of the studied seed species was evaluated through the electrical conductivity and pH test of the exudate by mass and individual methods being compared and correlated with the results obtained in the germination test. In addition to the tested methods, imbibition periods of the seeds were evaluated for conductivity and pH, which corresponded to 2, 4, 6, 8, 24 and 48 hours. The electrical conductivity test was efficient in both of the used methods to evaluate the physiological quality of the studied seed species when compared to the standard germination test. The pH test of the exudate applied by the individual method was more efficient and thorough to evaluate the physiological quality of the studied seed species, than the mass method. For the species Gallesia integrifolia, Cariniana legalis and Lonchocarpus campestris the pH tests of the exudate tests were not efficient due to poor or absent correlation between germination and pH.