4 resultados para Resíduos - Herbicidas

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strong selection pressure exerted by intensive use of glyphosate in cultivated areas has selected populations of the Rubiaceae weed species Borreria latifolia (Aubl.) K.Shum. (broadleaf buttonweed), Galianthe chodatiana (Standl.) E.L. Cabral (galiante) and Richardia brasiliensis Gomes (Brazilian pusley) with differential sensitivity to this herbicide in the South region of Brazil. The control of these weeds with herbicides is troublesome and signals the need to incorporate management practices of ruderal flora and crops, more sustainable and that results in more efficient control for long-term. Therefore, it is very important to expand the information about their biology and management. This study aimed: (a) select efficient methods to overcome dormancy of B. latifolia and G. chodatiana and determine how they influence the kinetics of seeds germination; (b) analyze the effects of temperature, irradiance, pH, aluminum and salinity on seed germination and initial growth of the B. latifolia, G. chodatiana e R. brasiliensis seedlings; (c) evaluate tolerance to glyphosate levels in biotypes of B. latifolia, G. chodatiana e R. brasiliensis through dose-response curves and compare two methods to evaluate herbicidal control; (d) and evaluated the effectiveness of alternative herbicides in pre-emergence and in early and late post-emergence of the three species. The treatment with KNO3 2%/3h + gibberellic acid 400 ppm resulted in higher percentage of G. chodatiana seed germination. This treatment and also the dry heat (60°C/30 min) + KNO3 2%/3h were more effective in overcoming dormancy of B. latifolia. G. chodatiana and R. brasiliensis tolerate lower temperatures during the germination process, while B. latifolia tolerate higher temperatures. B. latifolia and R. brasiliensis are positive photoblastic while G. chodatiana is indifferent to the photoperiod. B. latifolia shows higher germination and early development in pH 3, while G. chodatiana and R. brasiliensis prefer pH range between 5 and 7. B. latifolia and G. chodatiana were more tolerant to the aluminum during the germination process than R. brasiliensis. Low salt levels were sufficient to reduce the seed germination of the three species. Some biotypes of B. latifolia and R. brasiliensis showed medium-high glyphosate tolerance, not being controlled by higher doses than recommended. The G. chodatiana specie was not controlled with the highest dose used, showing a high glyphosate tolerance. The sulfentrazone, s-metolachlor and saflufenacil herbicides sprayed in pre-emergence showed high efficacy both on B. latifolia and R. brasiliensis, while chlorimuron-ethyl and diclosulan were effective only on R. brasiliensis. In early post-emergence the fomesafen, lactofem and flumioxazin herbicides efficiently controlled plants of all species, while bentazon showed high efficacy only on B. latifolia. Noteworthy the susceptibility of the G. chodatiana specie for applications in early post-emergence, because the control effectiveness and the number of effective herbicides are reduced with increasing the plant age. Many treatments with tank mix or sequencial applications with glyphosate, were effective in controlling B. latifolia and R. brasiliensis plants in advanced stage of development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of cover crops is a fundamental strategy to the weed management in Southern Brazil. In highly infested areas, the herbicides use is increasing, which increases the costs of the crops production as well as the environmental contamination. Oat and velvet bean plants havecontrasting characteristics regarding to residues decomposition speed and the capacity to immobilize Nitrogen in the soil, providing distinct results of weeds suppression throughout the time, and therefore, requiring distinct management strategies before, during, and after the corn crop establishment. The general objective of the experiment was to evaluate the environmental dynamics of the herbicide atrazine, the corn grain yield, and the efficiency of the weed control, considering areas with distinct history regarding the use of mulching, levels of straw and rates of atrazine. For this, the experiment was carried out in two parts: in the first part, two trials with the corn crop were established, one using oat and the other using velvet bean as cover crops. The experimental design used for both field trials was randomized complete blocks arrangement with four replications. The factor A was constituted by four levels of straw (0; 0.75x; 1.5x; 3x) and the factor B was constituted by four rates of the herbicide atrazine (0; 2100; 4200; 8400 g a i. ha-1). Soil samples were collected for greenhouse trialsto determine the persistence. Atrazine leaching evaluation was performed by chromatography using samples collected over the soil profile.In the field, the weed density, the fresh and dry weight and the yield of the corn were evaluated. In the greenhouse trials, the main variables evaluated were plant height and injury caused by the herbicide toxicity. In the second part, soils with distinct covering history were sampled, and the mineralization and sorption studies, both with 14C-atrazine, were conducted in the laboratory. The experimental design was randomized complete blocks arrangement with four replications. The results from the field experiment show that the high levels of straw above ground, isolated, were not efficient to control completely the weeds, and that high levels of velvet bean`s straw decreased the corn potential yield. The greenhouse trials showed that high levels of oat straw prevent the scape of atrazine to soil, this effect of oat straw upon the herbicide availability on soil was detected up to 12 days after spraying. The half-life of atrazine sprayed over oat straw varied from 7 to 14 days after spraying, while the half-life of atrazine sprayed over velvet bean varied from 5 to 14 days after spraying. Increasing oat straw levels presents the capacity to reduce the lixiviation of atrazine in the soil profile, however, this effect was not verified when using velvet bean straw, because the herbicide was not detected in the soil profile, at 21 days after spraying. The chromatographic analysis indicate thatthe atrazine concentrates closer to the soil surface regardless of amount of straw, not being detected deeper than 8 cm in the soil. The accumulated mineralization of 14C-arazine sprayed over V. sativa is superior if compared to soils with S. cereale or non-covered soils. The sorption coefficient of atrazine is superior when sprayed over straw than over the soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to assess the genetic inheritance, determine the better DNA isolation protocol for this species and to identify molecular markers associated with the Wild Poinsettia (Euphorbia heterophylla L.) resistance ALS- and PROTOX- inhibiting herbicides and. The genetic inheritance of resistance was determined from crosses between E. heterophylla biotypes susceptible (S) and resistant (R), backcrosses and F2 generation. The complete dominance of resistance was confirmed with dose response curves. Ten adjusted methods for DNA isolation described in the literature were tested. The specific primers for ALS and PROTOX genes were designed from the consensus DNA sequence of these genes, obtained by aligning the gene sequences of the species Manihot esculenta and Ricinus communis L. Additionally, it was assessed the transferability of twenty SSR (simple sequence repeat) markers designed for Manihot esculenta, because among the species of Euphorbiaceae with more developed SSRs markers, because it is the closest relative phylogenetic species of E. heterophylla. Regarding genetic inheritance, the frequencies observed in the F1, F2, RCs and RCr did not differ significantly from the expected frequencies for a trait controlled by two dominant genes for multiple resistance and a single dominant gene for simple resistance to ALS- and PROTOX-inhibiting herbicides. The similar levels of resistance to dosage up to 2000 g i.a. ha-1 of fomesafen and dosage up to 800 g i.a. ha-1 of imazethapyr observed in F1 (heterozygous) and homozygous R biotype confirm the complete dominance of resistance to PROTOX- and ALS-inhibiting herbicides, respectively. The 0.2%BME protocol allowed the isolation of 7,083 ng μL-1 DNA, significantly (P=0.05) higher than other methods. Co-isolation of phenolic compounds was observed in FENOL and 3%BME+TB methods, but the addition of polyvinylpyrrolidone (PVP40) in the protocol extraction buffer 3%BME+TA solved this problem. The primers designed for ALS and PROTOX genes amplified but not showed no visible polymorphism in agarose gel between the S and R biotypes of E. heterophylla. Regarding the SSR transferability, ten markers were transferred to E. heterophylla, however, these six primers showed polymorphism among S and R biotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The textile industry generates a large volume of high organic effluent loading whoseintense color arises from residual dyes. Due to the environmental implications caused by this category of contaminant there is a permanent search for methods to remove these compounds from industrial waste waters. The adsorption alternative is one of the most efficient ways for such a purpose of sequestering/remediation and the use of inexpensive materials such as agricultural residues (e.g., sugarcane bagasse) and cotton dust waste (CDW) from weaving in their natural or chemically modified forms. The inclusion of quaternary amino groups (DEAE+) and methylcarboxylic (CM-) in the CDW cellulosic structure generates an ion exchange capacity in these formerly inert matrix and, consequently, consolidates its ability for electrovalent adsorption of residual textile dyes. The obtained ionic matrices were evaluated for pHpcz, the retention efficiency for various textile dyes in different experimental conditions, such as initial concentration , temperature, contact time in order to determine the kinetic and thermodynamic parameters of adsorption in batch, turning comprehensive how does occur the process, then understood from the respective isotherms. It was observed a change in the pHpcz for CM--CDW (6.07) and DEAE+-CDW (9.66) as compared to the native CDW (6.46), confirming changes in the total surface charge. The ionized matrices were effective for removing all evaluated pure or residual textile dyes under various tested experimental conditions. The kinetics of the adsorption process data had best fitted to the model a pseudosecond order and an intraparticle diffusion model suggested that the process takes place in more than one step. The time required for the system to reach equilibrium varied according to the initial concentration of dye, being faster in diluted solutions. The isotherm model of Langmuir was the best fit to the experimental data. The maximum adsorption capacity varied differently for each tested dye and it is closely related to the interaction adsorbent/adsorbate and dye chemical structure. Few dyes obtained a linear variation of the balance ka constant due to the inversion of temperature and might have influence form their thermodynamic behavior. Dyes that could be evaluated such as BR 18: 1 and AzL, showed features of an endothermic adsorption process (ΔH° positive) and the dye VmL presented exothermic process characteristics (ΔH° negative). ΔG° values suggested that adsorption occurred spontaneously, except for the BY 28 dye, and the values of ΔH° indicated that adsorption occurred by a chemisorption process. The reduction of 31 to 51% in the biodegradability of the matrix after the dye adsorption means that they must go through a cleaning process before being discarded or recycled, and the regeneration test indicates that matrices can be reused up to five times without loss of performance. The DEAE+-CDW matrix was efficient for the removal of color from a real textile effluent reaching an UV-Visible spectral area decrease of 93% when applied in a proportion of 15 g ion exchanger matrix L-1 of colored wastewater, even in the case of the parallel presence of 50 g L-1 of mordant salts in the waste water. The wide range of colored matter removal by the synthesized matrices varied from 40.27 to 98.65 mg g-1 of ionized matrix, obviously depending in each particular chemical structure of the dye upon adsorption.