3 resultados para Proteinas na nutrição animal
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
Brazilian sweet sorghum is used to generate ethanol and the bagasse is burned in industrial boilers or deposited on soil polluting the environment. This study evaluated the performance of sorghum plants and its bagasse silage nutritional value aiming to use it in the ruminant nutrition. Experiments were set up on the UTFPR campus at Dois Vizinhos-PR. The first trial was established on October 2nd, 2012 using the genotypes ADV 2010, Hunnigreen, Sugargraze, Volumax, BR 505, 503, 501 and the second trial at 2013 on November 27th assessing the materials ADV 2010, Sugargraze, Hunnigreen, EX 5110, BR 506, 508, 509 and 511. Experimental was laid out as a randomized block design with three replications. Results were analyzed through ANOVA comparing the averages by Duncan test at 5% error probability. As field variables were evaluated: plant height (Pl hei), green mass production (GM Prod), percentage of leaves, stems and panicles in relation to the plant, stems production without straw (Prod stems with straw), whole stems production (Who stems Prod), stem diameter (Stem diam), juice production (Juice prod) and Brix degree (oBrix). After juice plant extraction, forage bagasse was crushed and packed in silos for 60 days and green matter yield was estimated (GM). In bagasse silage gauged to buffer capacity (BC), dry matter (DM), mineral matter (MM), crude protein (CP), ether extract (EE), total carbohydrates (TC), non-fibrous carbohydrates (NFCH), neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin (LIG ) and digestibility "in vitro" (DIGIV). There was no significant difference (P> 0.05) between genotypes regarding to green matter production and on average, the second crop yield was lower and reflected in the reduction of bagasse production. Bagasse silage DM was of 32.3% and 33.1%; NDF 73% and 65.8%, crude protein 3.8% and 5.9; pH 3.7 and 3.7; TC and 9.8 and 10.7. mg MS-1; the amount of NFCH was 11.1 and 13.5%; DIG of DM 36.9 and 62.4% for the respectively to the bagasse produced from materials grown in the 2012/2013 and 2013/2014 seasons. Hybrid genotypes had a better agronomic performance while the varieties were more efficient in bromatological indexes. And despite the high percentage of NDF and the low protein level, it is possible to feed ruminants with this coproduct.
Resumo:
Physiologists and animal scientists try to understand the relationship between ruminants and their environment. The knowledge about feeding behavior of these animals is the key to maximize the production of meat and milk and their derivatives and ensure animal welfare. Within the area called precision farming, one of the goals is to find a model that describes animal nutrition. Existing methods for determining the consumption and ingestive patterns are often time-consuming and imprecise. Therefore, an accurate and less laborious method may be relevant for feeding behaviour recognition. Surface electromyography (sEMG) is able to provide information of muscle activity. Through sEMG of the muscles of mastication, coupled with instrumentation techniques, signal processing and data classification, it is possible to extract the variables of interest that describe chewing activity. This work presents a new method for chewing pattern evaluation, feed intake prediction and for the determination of rumination, food and daily rest time through ruminant animals masseter muscle sEMG signals. Short-term evaluation results are shown and discussed, evidencing employed methods viability.
Resumo:
We conducted a field experiment near Abelardo Luz, Santa Catarina, from October 2012 to April 2014, to evaluate the effect interaction of nitrogen fertilization and height of canopy over the N nutrition of corn subsequently grown to pasture. The data belonging to this thesis are related to the first two production cycles obtained in sorghum pasture (2012/2013), oat (2013) and corn crop (2013/2014). In the evaluation of forage sorghum and oat it was used the same experimental design, consisting of randomized complete block in a factorial arrangement (2 x 2) with three replications. The first factor was considered canopy height (Low and High) and the second factor was the fertilization of cover crop pasture (0 and 200 kg N.ha-1). In phase I and II, the combination of factors evaluators were prepared in the same experimental unit. For corn crop the design was a randomized complete block in a factorial design (2X2X4X6) with three replications. Factors considered in corn were: canopy height of pasture (Low and High), nitrogen application times (NG - nitrogen in the grains and NP - nitrogen in pasture), nitrogen fertilization in corn (0, 100, 200 and 300 kg N.ha-1) and time (46, 53, 60, 67, 76 and 103 days after sowing the maize). In phases I and II, in general the use of N in the pasture increased the productive potential of the pasture and animal management and canopy height has changed the dynamics of structural components and botanical pasture. In cold conditions for long periods and not acclimatized plants the adoption of high nitrogen fertilization and height high grazing pasture leave vulnerable to damage caused by the freezing of plants. The anticipation of nitrogen fertilization on pasture positively affects the corn crop by increasing the accumulated dry matter and N content in the plant. Nitrogen nutritional content of corn with the anticipation of fertilization in pasture is suitable for obtaining high crop production in integrated crop-livestock system. When used nitrogen only coverage in corn sufficiency level in the nitrogen nutrition is achieved with the use of 100 kg N.ha-1. With the use of 200 kg N ha -1 NG and NP no difference in nitrogen content and nitrogen nutrition index.