6 resultados para Poluentes estrogénicos
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
The main aim of this study was to evaluate the impact of the urban pollution plume from the city of Manaus by emissions from mobile and stationary sources in the atmospheric pollutants concentrations of the Amazon region, by using The Weather Research and Forecasting with Chemistry (WRF-Chem) model. The air pollutants analyzed were CO, NOx, SO2, O3, PM2.5, PM10 and VOCs. The model simulations have been configured with a grid spacing of 3 km, with 190 x and 136 y grid points in horizontal spacing, centered in the city of Manaus during the period of 17 and 18 of March 2014. The anthropogenic emissions inventories have gathered from mobile sources that were estimated the emissions of light and heavy-duty vehicles classes. In addition, the stationary sources have considered the thermal power plants by the type of energy sources used in the region as well as the emissions from the refinery located in Manaus. Various scenarios have been defined with numerical experiments that considered only emissions by biogenic, mobile and stationary sources, and replacement fuel from thermal power plant, along with a future scenario consisting with twice as much anthropogenic emissions. A qualitative assessment of simulation with base scenario has also been carried out, which represents the conditions of the region in its current state, where several statistical methods were used in order to compare the results of air pollutants and meteorological fields with observed ground-based data located in various points in the study grid. The qualitative analysis showed that the model represents satisfactorily the variables analyzed from the point of view of the adopted parameters. Regarding the simulations, defined from the base scenarios, the numerical experiments indicate relevant results such as: it was found that the stationary sources scenario, where the thermal power plants are predominant, resulted in the highest concentrations, for all air pollutants evaluated, except for carbon monoxide when compared to the vehicle emissions scenario; The replacement of the energy matrix of current thermal power plants for natural gas have showed significant reductions in pollutants analyzed, for instance, 63% reductions of NOx in the contribution of average concentration in the study grid; A significant increase in the concentrations of chemical species was observed in a futuristic scenario, reaching up to a 81% increase in peak concentrations of SO2 in the study area. The spatial distributions of the scenarios have showed that the air pollution plume from Manaus is predominantly west and southwest, where it can reach hundreds of kilometers to areas dominated by original soil covering.
Resumo:
Energy indicators are tools to support decision-making on energy. The growing debate on sustainable development, contributed to the energy indicators began to incorporate, besides the traditional economic, social and environmental information. Therefore, taking sustainable development into account, it is important to know contributions and limitations of these tools. The overall goal of this study is to analyze the contributions and limitations of the energy indicators as assets to support sustainable development.This study can be classified as descriptive because it relies on bibliographical and documental material. As a result of documental analysis, 55 energy indicators for sustainable development (EISD) were selected. The selection took place by identification of those indicators through the institutions International Atomic Energy Agency (IAEA), Helio International and World Energy Council (WEC), among 19 institutions involved in research on energy identified in the survey. The study stresses that most of the selected indicators focuses on the economic dimension, 19 EISDs (34.54%), followed by 10 EISDs (18.18%) focused on the environmental dimension, 9 EISDs (16.36%) focused on the social issues, 7 EISDs (12.45%) are classified as resilience, 4 EISDs (7.27%) is about governance, 3 EISDs (5.45%) focused on vulnerability and 3 EISDs (5.45%) is about policy. Despite the inclusion of indicators associated with other dimensions than economy, information provided by those indicators emerges as their own limitation. Because, recently, indicators’ information were used to promote sustainable development as well as the opposite. Additionally, the study identified EISDs whose components were not specified. They may enable generation of information far from the real scenario, if components dissociated EISD would be taking into consideration or even the non-consideration of relevant components. Despite limitations, EISDs assisting decision-makers contributes to the pursuit of sustainable development. But they may be improved through information about environmental issues, such as emission of atmospheric pollutants, soil and water, resulting from energy sources, helps identifying which sources are more or less harmful for sustainable development. However, difficulty in collecting data, identifying the components for calculation of each indicator and even interpretation of this, as analyzed, may not only fail to contribute to sustainable development, as can delay taking corrective or preventive decisions.
Resumo:
This study aimed to determine the concentration and inorganic chemical composition of samples from airborne particulate matter inhaled in fine and coarse fractions. Aerosol samples were collected in 2013 and 2014, from sites located in the cities of Londrina and Maringa, in the state of Paraná, Brazil. The samples were collected daily (24h) in two campaigns: winter and summer. For the collection, was used a dichotomous sampler with quartz fiber filter with 47 mm in size and 2 µm porosity, 97% efficiency, retaining particles of up to 0.3 µm. Quantification of the airborne particulate matter mass was performed by gravimetry method. The results from Londrina to PM2.5 and MP2,5-10 represent, respectively, 29.2% and 70.8% of airborne particulate matter in the winter campaign (2013), 30.9% (PM2.5) and 69.1 % (MP2,5-10) in the summer campaign (2013), and 35.9% (PM2.5) and 64.1% (MP2,5-10) in the winter 2014 campaign. In the city of Maringa, the results presented the percentage of 42.0% (PM2.5) and 58.0% (MP2,5-10) for the winter season (2014), and 28.8% (PM2.5) and 71.2 % (MP2,5-10) for the summer season (2014). The PM2.5/PM10 ratio was on average 0.3, demonstrating that both cities are developing urban areas. Analysis of the major soluble inorganic species in water (NO3-, SO42- and Cl-) associated with MP2,5-10 were quantified by ion chromatography at the LACA Laboratory in the State University of Londrina, with the largest contribution found in all campaigns was to NO3-. The NO3-/SO42- ratios above 1.0 indicate the local traffic contribution. The analysis of metals associated with PM2.5 was carried out by mass spectrometry with inductively coupled plasma (ICP-MS) in the Federal University of Santa Catarina. The Zn, Pb, Cu and Mn concentrations found in all campaigns indicate the contribution of mobile sources to PM2.5. The concentration of BCe in PM2.5 was determined by reflectance, with higher BCe concentrations being found in winter campaigns. In general, Londrina presented the highest concentrations from the species analyzed when compared to Maringá. In addition, the analysis of the air mass trajectories indicated the transportation of pollutants coming mainly from fires in the southeastern region of the country.
Resumo:
In recent years the photovoltaic generation has had greater insertion in the energy mix of the most developed countries, growing at annual rates of over 30%. The pressure for the reduction of pollutant emissions, diversification of the energy mix and the drop in prices are the main factors driving this growth. Grid tied systems plays an important role in alleviating the energy crisis and diversification of energy sources. Among the grid tied systems, building integrated photovoltaic systems suffers from partial shading of the photovoltaic modules and consequently the energy yield is reduced. In such cases, classical forms of modules connection do not produce good results and new techniques have been developed to increase the amount of energy produced by a set of modules. In the parallel connection technique of photovoltaic modules, a high voltage gain DC-DC converter is required, which is relatively complex to build with high efficiency. The current-fed isolated converters explored in this work have some desirable characteristics for this type of application, such as: low input current ripple and input voltage ripple, high voltage gain, galvanic isolation, feature high power capacity and it achieve soft switching in a wide operating range. This study presents contributions to the study of a high gain and high efficiency DC-DC converter for use in a parallel system of photovoltaic generation, being possible the use in a microinverter or with central inverter. The main contributions of this work are: analysis of the active clamping circuit operation proposing that the clamp capacitor connection must be done on the negative node of the power supply to reduce the input current ripple and thus reduce the filter requirements; use of a voltage doubler in the output rectifier to reduce the number of components and to extend the gain of the converter; detailed study of the converter components in order to raise the efficiency; obtaining the AC equivalent model and control system design. As a result, a DC-DC converter with high gain, high efficiency and without electrolytic capacitors in the power stage was developed. In the final part of this work the DC-DC converter operation connected to an inverter is presented. Besides, the DC bus controller is designed and are implemented two maximum power point tracking algorithms. Experimental results of full system operation connected to an emulator and subsequently to a real photovoltaic module are also given.
Resumo:
The environmental pollution caused by industries has increased the concentration of pollutants in the environment, especially in water. Among the most diverse contaminants, there is the metals, who may or may not to be heavy/toxic, causing effluent of difficult treatment when in low concentrations. The search for alternative measures of wastewater effluent treatment has led to studies using phytoremediation technique through the various matrices (plant, fungi, bacteria) as means of polishing treatment to remove contaminants by means of biosorption/bioaccumulation. In order to use the phytoremediation technique for removing metals of the environmental, it have been performed bioassay with the macrophyte Pistia stratiotes. The bioassays were realized with healthy plants of P. stratiotes acclimatized in a greenhouse, at room temperature and lighting conditions during 28 days of cultivate. The cultivations were performed in glass vessels containing 1 L of the hydroponic solution with chromium (VI) in the potassium dichromate form with concentration range 0.10 to 4.90 mg L-1. The experiments were performed by Outlining Central Composite Rotational (OCCR), where the kinetics of bioaccumulation and chlorophyll a fluorescence were monitored in plants of P. stratiotes during cultivation. The collections of the samples and cultive solution were performed according to the OCCR. The chromium levels were measured in samples of P. stratiotes and the remaining solutions by the methodology of atomic absorption spectrometry by flame. The tolerance of P. stratiotes in relation to exposure to chromium (VI) was analyzed by parameters of physiological activity by means of chlorophyll a fluorescence, using the portable fluorometer PAM (Pulse Amplitude Modulation). The development of P. stratiots and their biomass were related to the time factor, while bioaccumulation capacities were strongly influenced by factors of time and chromium concentration (VI). The chlorophyll fluorescence parameters were affected by chromium and the exposure time at the bioassays. It was obtained an higher metal removal from the root in relation to the sheet, reaching a high rate of metal removal in solution. The experimental data removal kinetics were represented by kinetic models Irreversibly Langmuir, Reversible Langmuir, Pseudo-first Order and Pseudo-second Order, and the best fit for the culture solution was the Reversible Langmuir model with R² 0.993 and for the plant the best model was Pseudo-second order with R² 0.760.
Resumo:
Air pollution can threat the environment and public health, and is assess by pollutant ́s concentration measurements in order to verify whether the limits set by environmental agencies are being respected. However, these measures do not indicate immediately the impacts to living beings. To faced this problem, plants are been investigated as potential bioindicators of air pollution and, among them, stand out bromeliads Tillandsia genus which colonize various substrates,. obtaining water and nutrients from the atmosphere directly. In this context, this research assessed the potential of epiphytic bromeliad Tillandsia recurvata (L.) L. found in urbanized areas of the city of Curitiba - PR as a bioindicator of urban air pollution. According to vehicle traffic, five sample points were selected and classified. Points P1 and P2 were classified as high-traffic vehicle due presenting trucks and urban transport; point P3 was classified as moderate traffic due the predominance of private vehicles and urban transport; and points P4 and P5 were classified as low-traffic, presenting circulation of private vehicles only. There were analyzed the abundance of T. recurvata, morphophysiological parameters (leaf area, leaf specific area, sclerophylly index, percentage dry weight / fresh weight, chlorophyll (a + b), analysis of structural mesophyll organization) and the heavy metals accumulation (Fe, Cd, Cr, Cu, Pb and Zn). The abundance analysis and the results obtained for metals analysis were correlated with the intensity of vehicular traffic, directing the sampling points P1 > P2 = P3 > P4 = P5. This result demonstrate that the abundance of T. recurvata is greater in urban air pollution impacted areas, thus indicating that T. recurvata absorbs and accumulates metals and can be used in biomonitoring of urban air pollution in areas impacted by vehicular traffic. Morphophysiological parameters analyzed shows that the internal plant ́s structure is not significantly impacted by urban air pollution due plant ́s adptations. The presence of absorbing scales, the CAM metabolism pathway and it ́s store water ability, among other features, demonstrate their potential as bio-indicator in urban areas, especially regarding heavy metals accumulation .