2 resultados para Polimorfismo Ser49Gly
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
This study aimed to assess the genetic inheritance, determine the better DNA isolation protocol for this species and to identify molecular markers associated with the Wild Poinsettia (Euphorbia heterophylla L.) resistance ALS- and PROTOX- inhibiting herbicides and. The genetic inheritance of resistance was determined from crosses between E. heterophylla biotypes susceptible (S) and resistant (R), backcrosses and F2 generation. The complete dominance of resistance was confirmed with dose response curves. Ten adjusted methods for DNA isolation described in the literature were tested. The specific primers for ALS and PROTOX genes were designed from the consensus DNA sequence of these genes, obtained by aligning the gene sequences of the species Manihot esculenta and Ricinus communis L. Additionally, it was assessed the transferability of twenty SSR (simple sequence repeat) markers designed for Manihot esculenta, because among the species of Euphorbiaceae with more developed SSRs markers, because it is the closest relative phylogenetic species of E. heterophylla. Regarding genetic inheritance, the frequencies observed in the F1, F2, RCs and RCr did not differ significantly from the expected frequencies for a trait controlled by two dominant genes for multiple resistance and a single dominant gene for simple resistance to ALS- and PROTOX-inhibiting herbicides. The similar levels of resistance to dosage up to 2000 g i.a. ha-1 of fomesafen and dosage up to 800 g i.a. ha-1 of imazethapyr observed in F1 (heterozygous) and homozygous R biotype confirm the complete dominance of resistance to PROTOX- and ALS-inhibiting herbicides, respectively. The 0.2%BME protocol allowed the isolation of 7,083 ng μL-1 DNA, significantly (P=0.05) higher than other methods. Co-isolation of phenolic compounds was observed in FENOL and 3%BME+TB methods, but the addition of polyvinylpyrrolidone (PVP40) in the protocol extraction buffer 3%BME+TA solved this problem. The primers designed for ALS and PROTOX genes amplified but not showed no visible polymorphism in agarose gel between the S and R biotypes of E. heterophylla. Regarding the SSR transferability, ten markers were transferred to E. heterophylla, however, these six primers showed polymorphism among S and R biotypes.
Resumo:
The identification of genotypes for drought tolerance has a great importance in breeding programs. The aim of this study was to characterize genotypes of beans in response to drought tolerance in different reproductive stages through physiologic, agronomic and molecular analysis. The experiment was conducted in greenhouse, using a randomized block design with four replicates; 10 cultivars: ANFC 9, ANFP 110, BRS Esplendor, BRSMG Realce, IPR Siriri, IPR Tangará, IPR Tuiuiu, IPR Uirapuru, IAC Imperador and IAC Milênio under two conditions of irrigation: plants irrigated during their entire life cycle, and plants under irrigation suppression in the reproductive stage (R7) until 16% of field capacity, when the irrigation was restored. In the last four days of stress, the gas exchanges were analyzed, and in the last day of stress was analyzed the percentage of closed stomata in the abaxial surface of the leaves, collected in different times of the day (9h, 12h, 15h and 18h). Additionally, plant samples were collected for the following analysis: fresh and dry mass of leaves, stems and legumes, and proline content in leaves and roots. The plants were harvested at the physiological maturity and the yield components and grain yield were determined. In addition, in order to identify polymorphisms in the sequences of promoters and genes related to drought, seven pairs of primers were tested on the group of genotypes. The drought susceptibility indexes (ISS) ranged from 0.65 to 1.10 in the group of genotypes, which the lowest values observed were for IAC Imperador (0.65) and BRS Esplendor (0.87), indicating the ability of these two genotypes to maintain grain yield under water stress condition. All genotypes showed reduction in yield components under water stress. IAC Imperador (43.4%) and BRS Esplendor (60.6%) had the lowest reductions in productivity and kept about 50% of the stomata closed during all the different times evaluated at last day of irrigation suppression. IAC Imperador showed greater water use efficiency and CO2 assimilation rate under drought stress. IPR Tuiuiú, IPR Tangará and IAC Imperador had the highest proline concentrations in the roots. Under water stress condition, there was a strong positive correlation (0.696) between the percentage of stomata closed with the number of grains per plant (0.696) and the fresh mass of leaves (0.731), the maximum percentage of stomata closed 73.71% in water stress. The accumulation of proline in the root was the character that most contributed to the divergence between the genotypes under water deficit, but not always the genotypes that have accumulated more proline were the most tolerant. The polymorphisms in DNA of coding and promoting sequences of transcription factors studied in this experiment did not discriminate tolerant genotypes from the sensitive ones to water stress.