3 resultados para Polímero e retrogressão

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Induction of resistance is defined as the activation of a state of resistance against diseases which is induced systemically in plants by the use of biotic or abiotic agents without any modification of the plant genome, occurring non-specific way, by activating genes coding for various plant defense responses. Chitosan is a polymer derived from the deacetylation of chitin, which is found in large quantities in crustacean shell, and studied with the potential to control plant pathogens, both by its direct fungistatic action, as the ability to induce protection of plants, indicating the presence of molecules of elicitoras characteristics. Three experiments with objective of evaluating the potential of chitosan in the seedling resistance induction were developed, beet (Beta vulgaris) seeds, cucumber (Cucumis sativus) seeds and tomato (Solanum lycopersicum) seeds, and the control of Fusarium sp., Rhizoctonia solani K¨uhn e Pythium sp. in vitro conditions. The experimental design was completely randomized, with four replications. Beet seeds, tomato and cucumber were submerged in chitosan solution for 20 minutes, in concentrations of 0.25, 0.5, 1 and 2% in the control and distilled water. Seeds were sown in trays containing Plantmax Florestalr substrate sterilized and inoculated with Fusarium sp., Rhizoctonia solani K¨unh and Pythium sp., respectively for the three cultures. The experiment was conducted for 14 days in growth chamber with controlled temperature (25 C 2 C), light (12 hour photoperiod) and humidity (70% 10%). The evaluations were seed emergency, seedling damping-off, seedling length, fresh weight and activity of the enzymes phenylalanine amˆonia-liase (PAL), chitinase and b-1,3-glucanase. It was also rated the mycelial growth of Fusarium sp., Pythium sp. and R. solani on P.D.A. (Potato-Dextrose and Agar) culture medium containing chitosan at the same concentrations evaluated in seeds. For beet growing, seed treatment with chitosan presented higher emergence and the length of the seedlings, and reduced the percentage of tipping. Treatment with chitosan activated the systemic acquired resistance with expression of chitinase and b-1,3-glucanase enzymes. For the tomato crop in chitosan concentration of 0.25% favored the emergency of seedlings, reduced the incidence of tipping and activated the PAL enzymes, chitinase and b-1,3-glucanase. In cucumber on the concentration of up 0.5% favored seedlings emergence and reduces the incidence of tipping. Chitosan activated the PAL enzymes and b-1,3-glucanase. Chitosan also presented fungistatic action on the initial growth of Pythium sp. and R. solani in vitro conditions, however, such action did not prevail until the end of the experiment. To Fusarium sp. the concentration of chitosan resulted in the reduction of mycelial growth in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of biopolymers that help to fix pesticides efficiently and degrade easily without harming the environment, and still improve the physiological performance of field soybean seed may bring contributions to the soybean yield. This study aimed to evaluate the effect of cassava starch polymers (AM), sodium alginate (ALG) and polyvinyl alcohol (PVOH), in the concentrations 2, 4 and 6 g / 100 ml of solution, in the physiological attributes of seeds soy, seed speed soaking and performance of soybean seeds after three months of storage. The soybean variety used was the NK 7059 RR. The experimental design used for the three studies was a factorial with 48 experimental units: 3 polymers (AM, ALG and PVOH), 4 different concentrations (0%, 2%, 4% and 6%), with four replications, in a completely randomized design. It was observed the level of significance of the factors and their interactions, applying the test F. The polymers were evaluated by the Tukey test at 5% probability, and the concentrations were evaluated by polynomial regression. The witness obtained better results for most variables studied. Among the polymers, the best coating was observed PVOH because it was the less viscous polymer and visually not served as a substrate for microorganisms. However, also, satisfactory results were obtained for the AM and ALG polymers at a concentration of 2%. There was not interference of the polymers studied with regard to reduction of imbibition rate of soybean seeds. The hydrophilicity of polymers, mainly the AM and ALG accelerated soaking seeds harming germination at concentrations 4% and 6%. In general, the higher the concentration of polymers tended to worse results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lasiodiplodan is an exocellular β-glucan with biological functionalities such as antioxidant, antiproliferative, hypocholesterolemic, protective activity against DNA damage induced by doxorubicin and hypoglycemic activity. Chemical derivatization of polysaccharide macromolecules has been considered as a potentiating mechanism for bioactivity. In this context, this work proposes the derivatization of lasiodiplodan by acetylation. Acetic anhydride was used as derivatizing agent and pyridine as catalyst and reaction medium. The derivatives obtained were evaluated by its water solubility, degree of substitution (DS), antioxidant potential, and characterized by infrared spectroscopy (FT-IR), thermal analysis, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. Acetylated derivatives with different degrees of substitution (1.26; 1.03; 0.66 and 0.48) were obtained, and there was correlation between the concentration of derivatizing agent and DS. FT-IR spectroscopy analysis confirmed the insertion of acetyl groups into derivatized macromolecules (LAS-AC) through of specific bands concerning to carbonyl group (C = O) and increase in C-O vibration. SEM analysis indicated that native lasiodiplodan presents morphological structure in the form of thin films with translucent appearance and folds along its length. Derivatization led to morphological changes in the polymer, including aspects thickness, translucency and agglomeration. Thermal analysis indicated the native sample and derivative with DS 0.48 presented three weight loss stages. The first stage occurred until 125 ° C (loss of water) and there were two consecutive events of weight loss (200 ° C - 400 ° C) attributed to molecule degradation. Samples with DS 1.26; 1.03 and 0.66 demonstrated four weight loss stages. The first stage occurred until 130 ° C (loss of water), following by two consecutive events of weight loss (200 ° C - 392 ° C) attributed to degradation of the biopolymer. The fourth stage was between 381 ° C and 532 ° C (final decomposition) with exothermic peaks between 472 ° C and 491 ° C. X-ray diffraction patterns showed that native and acetylated lasiodiplodan have amorphous structure with semicrystalline regions. Derivatization did not contribute to increased solubility of the macromolecule, but potentiated its antioxidant capacity. Acetylation of lasiodiplodan allowed to obtaining a new macromolecule with higher antioxidant potential than the native molecule and with technological properties applicable in various industrial sectors.