4 resultados para Periodonto - Regeneração

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this study was to compare areas under different forest restoration technologies in relation to abundance, richness, diversity and composition of the present fauna in the litter and soil. The treatments evaluated were: natural regeneration (RN); high diversity tree plantations (L) and nucleation (N). An area of secondary forest was included in the study as a reference of soil conditions. The experimental design was in randomized block with four replications. Samples were collected for extraction of mesofauna (October/2012; July and October/2013) and macrofauna (June and October/2013) in six points of each plot, totaling 24 samples per treatment. For collecting soil macrofauna was used TSBF method. The mesofauna was collected with a metal cylinder and extracted by Berlese-Tüllgren funnel. Litter and soil were collected separately at each point and the fauna was identified level of class/taxonomic order. The springtails were classified using morphotypes. In total, considering the mesofauna, macrofauna and three times collected were accounted 28618 organisms. In relation soil mesofauna, the evaluated technologies did not differ, after three years of restoration, in relation to total abundance of organisms and community composition. The Shannon diversity index (H), in soil mesofauna, followed a human impact gradient. This index was higher in natural regeneration, which not was undergone technical interventions and showed higher moisture in the soil. The tree planting technology, under the control of volunteer plants in total area, showed lower H index. In the case of litter mesofauna, the technologies did not differ in relation the mean richness, total abundance of organisms and community composition. Considering edaphic macrofauna, technologies did not differ in relation to the abundance and richness, and in the evaluation of June/2013, RN showed higher H index and differed in relation to the community composition of other technologies. In October/2013 evaluation, the differences between the technologies in relation to H index were narrower and these did not differ in terms of composition of soil macrofauna community. In litter macrofauna, in June/2013, the RN presented greater richness and H index when compared to other technologies and in evaluation October/2013 technologies did not differ in relation to community composition, richness and mean abundance of organisms. In the case of springtails, technologies after three years in the restoration process, did not differ in relation to the abundance, richness and composition of Collembola community for different morphotypes. The secondary forest, in relation to forest restoration technologies, presented greater abundance of saprophages, predators and greater diversity of morphotypes of springtails. From these results it, we recommended to natural regeneration by to have the lowest cost of deployment, followed by nucleation and online planting. The animals should be monitored over time, in the restoration technologies, as well as the physical and chemical characteristics of the soil, in order to understand the possible changes in the composition and diversity of organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To design strategies for the conservation and use of genetic resources of tree species such as jaboticaba tree, it is essential to make the characterization. In southwestern Paraná region, there are several forest fragments containing native jaboticaba tree (Plinia cauliflora), whose materials have broad potential for commercial orchards or breeding programs. As is the potential genetic diversity of a population to produce different genotypes, it would be able to start in such a characterization one of these fragments. The aim was to characterize fruits of jaboticaba tree (P. caulifora) of forest fragment kept in Clevelândia - PR for the presence of phenotypic variability, seeking to identify those superiors named for future selection as farming or male parent, as well as estimate genetic divergence between them, as a complementary tool for this purpose. Also, verify the regeneration and spatial distribution of the species. For the study was defined portion of a hectare (10.000 m²), with all individuals identified, mapped, with local coordinate system, and measured height and diameter. Fruits were characterized by sensory and biochemical characteristics in two years, 70 genotypes at 2013 and 56 at 2014, and of these 33 genotypes in both years. As a pre-selection criteria was adopted the choice of 20% of the genotypes that showed the highest frequency of superiority in the evaluated characteristics of the fruit. Genetic divergence among 33 genotypes per year was analyzed. The distribution pattern and spatial association was evaluated by Ripley's K function. It was classified for the first time the following ontogenetic stages of jaboticaba tree, by plant height, seedling (from 0.01 to 0.99 m), juvenile (1.0 to 4.99 m), immature (> 5.0 m, non-reproductive), adult (reproductive). It was also have been describe for the first time the naturally occurring juxtaposed seedlings, indicating polyembryony. The number of regenerating identified in the population (seedlings: n = 2163; juveniles: n = 330; immature: n = 59) was much larger than the number of adults (n = 132). The species showed reverse J-shaped size structure standard, with high concentration of regenerating. The regeneration distribution occurs in aggregate pattern and there is seedling-adult dependence, due seed dispersal and seedling emergence closest to mothers. The jaboticaba tree regeneration is sufficient to maintain the species for long term in this population, which should serve as reference to regeneration success for other studies of this important fruiting species from Ombrofile Mixed Forests. Has been pre-selected the jaboticaba trees 7, 42, 43, 47, 54, 91, 97, 104, 105, 118, 134, 153, 154, 157, 163, 169, 177, 186, 212, J7-01 and J7- 02, and 16 and 194 the ones that can now be selected by the superior characteristics of both cycles. It was recommended to carry out hybridization between genotypes 79 and 119, and 96 to 148. The quality of fruit analyzed showed potential for use as a dual purpose serving both in natura market or processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The replacement of native vegetation by other land uses is one of the main degrading ecosystem agents, being the most important component of terrestrial environments, natural or with different levels of human disturbance, besides being the main substrate used by plants to obtain conditions soil for its development. In this context, there is the need to adopt the use and sustainable management of land systems. The study aimed to evaluate what is forest restoration system more efficient degraded areas, based on the potential recovery of physical, chemical, carbon and biological activity in the soil. The work was conducted in a forest restoration area UTFPR- Campus two neighbors, whose experiment was established in October 2010. The experimental design is completely randomized, with four replications and experimental plot of 40 m wide by 54 m long ( 2160 m2) were collected and six sampling points per plot. The soil is classified as a Typic. The models evaluated are: 1 - natural or passive regeneration; 2 - Nucleation; 3 - Planting trees in the total area under lines fill and diversity (total planting); 4 - Reference area (forest). The collection of soil samples in layers of 0.0-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.40 m was carried out in October 2013 and evaluated physical attributes of texture, bulk density, total porosity, microporosity and soil macroporosity and stability of water in households, chemical properties, and total organic carbon (TOC) and physical particle size fractionation and soil biological activity. To find the best forest restoration model, we designed a Restoration Quality Weighted Index for each variable analyzed. Natural regeneration and total plantation showed generally better soil aggregation over 0.10 m and nucleation volume of similar porosity the forest for these layers. There were no differences between the models below 0.10 m for the variables aggregation and soil porosity. The nucleation template had the lowest bulk density, but being greater than the density in the layer forest 0.05-0.10 m, however, was similar to below 0.10 m above the ground. The models had chemical properties similar to or greater than the forest. The forest had the highest stock of COT and carbon associated with minerals (CAM), but natural regeneration was similar to the particulate organic carbon (POC) in the superficial layers of the soil (0-0.10 m), below 0, 10 m, the forest showed higher stock of COT and COP on the ground. The highest peak of C-CO2 emissions occurred in the 28-35 day range where the total plantation was similar to forest. After four years of experiments, it was found that the effect of restoration methods on physical attributes and soil carbon restricted to 0.10 m deep.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The textile industry generates a large volume of high organic effluent loading whoseintense color arises from residual dyes. Due to the environmental implications caused by this category of contaminant there is a permanent search for methods to remove these compounds from industrial waste waters. The adsorption alternative is one of the most efficient ways for such a purpose of sequestering/remediation and the use of inexpensive materials such as agricultural residues (e.g., sugarcane bagasse) and cotton dust waste (CDW) from weaving in their natural or chemically modified forms. The inclusion of quaternary amino groups (DEAE+) and methylcarboxylic (CM-) in the CDW cellulosic structure generates an ion exchange capacity in these formerly inert matrix and, consequently, consolidates its ability for electrovalent adsorption of residual textile dyes. The obtained ionic matrices were evaluated for pHpcz, the retention efficiency for various textile dyes in different experimental conditions, such as initial concentration , temperature, contact time in order to determine the kinetic and thermodynamic parameters of adsorption in batch, turning comprehensive how does occur the process, then understood from the respective isotherms. It was observed a change in the pHpcz for CM--CDW (6.07) and DEAE+-CDW (9.66) as compared to the native CDW (6.46), confirming changes in the total surface charge. The ionized matrices were effective for removing all evaluated pure or residual textile dyes under various tested experimental conditions. The kinetics of the adsorption process data had best fitted to the model a pseudosecond order and an intraparticle diffusion model suggested that the process takes place in more than one step. The time required for the system to reach equilibrium varied according to the initial concentration of dye, being faster in diluted solutions. The isotherm model of Langmuir was the best fit to the experimental data. The maximum adsorption capacity varied differently for each tested dye and it is closely related to the interaction adsorbent/adsorbate and dye chemical structure. Few dyes obtained a linear variation of the balance ka constant due to the inversion of temperature and might have influence form their thermodynamic behavior. Dyes that could be evaluated such as BR 18: 1 and AzL, showed features of an endothermic adsorption process (ΔH° positive) and the dye VmL presented exothermic process characteristics (ΔH° negative). ΔG° values suggested that adsorption occurred spontaneously, except for the BY 28 dye, and the values of ΔH° indicated that adsorption occurred by a chemisorption process. The reduction of 31 to 51% in the biodegradability of the matrix after the dye adsorption means that they must go through a cleaning process before being discarded or recycled, and the regeneration test indicates that matrices can be reused up to five times without loss of performance. The DEAE+-CDW matrix was efficient for the removal of color from a real textile effluent reaching an UV-Visible spectral area decrease of 93% when applied in a proportion of 15 g ion exchanger matrix L-1 of colored wastewater, even in the case of the parallel presence of 50 g L-1 of mordant salts in the waste water. The wide range of colored matter removal by the synthesized matrices varied from 40.27 to 98.65 mg g-1 of ionized matrix, obviously depending in each particular chemical structure of the dye upon adsorption.