2 resultados para Multics (Computer operating system)
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
Following a drop in estrogen in the period of menopause some women begin to lose bone mass more than 1% per year reaching the end of five years with loss greater than 25%. In this regard, factors such as older age, low calcium intake and premature menopause favor the onset of osteoporosis. Preventive methods such as nutritional counseling to a proper diet and the support of technology through applications that assess dietary intake are essential. Thus, this study aimed to develop an application for Android® platform focused on the evaluation of nutritional and organic conditions involved in bone health and risks for developing osteoporosis in postmenopausal women. To achieve this goal we proceeded to a study of 72 women aged 46-79 years, from the physical exercise for bone health of the Laboratory for Research in Biochemistry and Densitometry the Federal Technological University of Paraná program. Data were collected in the second half of 2014 through tests Bone Densitometry and Body Composition, Blood Tests, Anthropometric data and Nutrition Assessment. The study included women with a current diagnosis of osteopenia or osteoporosis primary, aged more than 45 years postmenopausal. For the assessment of bone mineral density and body composition used the device Absorptiometry Dual Energy X-ray (DXA) brand Hologic Discovery TM Model A. For anthropometric assessment was included to body mass, height, abdominal circumference, Waist circumference and hip circumference. The instrument for assessing food consumption was used Recall 24 hours a day (24HR). The estimated intake of energy and nutrients was carried from the tabulation of the food eaten in the Software Diet Pro 4®. In a sub sample of 30 women with osteopenia / osteoporosis serum calcium and alkaline phosphatase tests were performed. The results demonstrated a group of women (n = 30) average calcium intake of 570mg / day (± 340). The analysis showed a mean serum calcium within the normal range (10,20mg / dl ± 0.32) and average values and slightly increased alkaline phosphatase (105.40 U / L ± 23.70). Furthermore, there was a significant correlation between the consumption of protein and the optimal daily intake of calcium (0.375 p-value 0.05). Based on these findings, we developed an application early stage in Android® platform operating system Google®, being called OsteoNutri. We chose to use Java Eclipse® where it was executed Android® version of the project; choice of application icons and setting the visual editor for building the application layouts. The DroidDraw® was used for development of the three application GUIs. For practical tests we used a cell compatible with the version that was created (4.4 or higher). The prototype was developed in conjunction with the Group and Instrumentation Applications Development (GDAI) of the Federal Technological University of Paraná. So this application can be considered an important tool in dietary control, allowing closer control consumption of calcium and dietary proteins.
Resumo:
This document presents GEmSysC, an unified cryptographic API for embedded systems. Software layers implementing this API can be built over existing libraries, allowing embedded software to access cryptographic functions in a consistent way that does not depend on the underlying library. The API complies to good practices for API design and good practices for embedded software development and took its inspiration from other cryptographic libraries and standards. The main inspiration for creating GEmSysC was the CMSIS-RTOS standard, which defines an unified API for embedded software in an implementation-independent way, but targets operating systems instead of cryptographic functions. GEmSysC is made of a generic core and attachable modules, one for each cryptographic algorithm. This document contains the specification of the core of GEmSysC and three of its modules: AES, RSA and SHA-256. GEmSysC was built targeting embedded systems, but this does not restrict its use only in such systems – after all, embedded systems are just very limited computing devices. As a proof of concept, two implementations of GEmSysC were made. One of them was built over wolfSSL, which is an open source library for embedded systems. The other was built over OpenSSL, which is open source and a de facto standard. Unlike wolfSSL, OpenSSL does not specifically target embedded systems. The implementation built over wolfSSL was evaluated in a Cortex- M3 processor with no operating system while the implementation built over OpenSSL was evaluated on a personal computer with Windows 10 operating system. This document displays test results showing GEmSysC to be simpler than other libraries in some aspects. These results have shown that both implementations incur in little overhead in computation time compared to the cryptographic libraries themselves. The overhead of the implementation has been measured for each cryptographic algorithm and is between around 0% and 0.17% for the implementation over wolfSSL and between 0.03% and 1.40% for the one over OpenSSL. This document also presents the memory costs for each implementation.