4 resultados para Modelo de Processamento de Informação Humano (MPHI)
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
The business environment context points at the necessity of new forms of management for the sustainable competitiveness of organizations through time. Coopetition is characterized as an alternative in the interaction of different actors, which compete and cooperate simultaneously, in the pursuit of common goals. This dual relation, within a gain-increasing perspective, converts competitors into partners and fosters competitiveness, especially that of organizations within a specific sector. The field of competitive intelligence has, in its turn, assisted organizations, individually, in the systematization of information valuable to decision-making processes, which benefits competitiveness. It follows that it is possible to combine coopetition and competitive intelligence in a systematized process of sectorial intelligence for coopetitive relations. The general aim of this study is, therefore, to put forth a model of sectorial coopetitive intelligence. The methodological outlining of the study is characterized as a mixed approach (quantitative and qualitative methods), of an applied nature, of exploratory and descriptive aims. The Coordination of the Strategic Roadmapping Project for the Future of Paraná's Industry is the selected object of investigation. Protocols have been designed to collect primary and secondary data. In the collection of the primary ata, online questionary were sent to the sectors selected for examination. A total of 149 answers to the online questionary were obtained, and interviews were performed with all embers of the technical team of the Coordination, in a total of five interviewees. After the collection, all the data were tabulated, analyzed and validated by means of focal groups with the same five members of the Coordination technical team, and interviews were performed with a representative of each of the four sectors selected, in a total of nine participants in the validation. The results allowed the systematization of a sectorial coopetitive intelligence model called ICoops. This model is characterized by five stages, namely, planning, collection, nalysis, project development, dissemination and evaluation. Each stage is detailed in inputs, activities and outputs. The results suggest that sectorial coopetition is motivated mainly by knowledge sharing, technological development, investment in R&D, innovation, chain integration and resource complementation. The importance of a neutral institution has been recognized as a facilitator and incentive to the approximation of organizations. Among the main difficulties are the financing of the projects, the adhesion of new members, the lack of tools for the analysis of information and the dissemination of the actions.
Resumo:
Universities are institutions that generate and manipulate large amounts of data as a result of the multiple functions they perform, of the amount of involved professionals and students they attend. Information gathered from these data is used, for example, for operational activities and to support decision-making by managers. To assist managers in accomplishing their tasks, the Information Systems (IS) are presented as tools that offer features aiming to improve the performance of its users, assist with routine tasks and provide support to decision-making. The purpose of this research is to evaluate the influence of the users features and of the task in the success of IS. The study is of a descriptive-exploratory nature, therefore, the constructs used to define the conceptual model of the research are known and previously validated. However, individual features of users and of the task are IS success antecedents. In order to test the influence of these antecedents, it was developed a decision support IS that uses the Multicriteria Decision Aid Constructivist (MCDA-C) methodology with the participation and involvement of users. The sample consisted of managers and former managers of UTFPR Campus Pato Branco who work or have worked in teaching activities, research, extension and management. For data collection an experiment was conducted in the computer lab of the Campus Pato Branco in order to verify the hypotheses of the research. The experiment consisted of performing a distribution task of teaching positions between the academic departments using the IS developed. The task involved decision-making related to management activities. The data that fed the system used were real, from the Campus itself. A questionnaire was answered by the participants of the experiment in order to obtain data to verify the research hypotheses. The results obtained from the data analysis partially confirmed the influence of the individual features in IS success and fully confirmed the influence of task features. The data collected failed to support significant ratio between the individual features and the individual impact. For many of the participants the first contact with the IS was during the experiment, which indicates the lack of experience with the system. Regarding the success of IS, the data revealed that there is no significance in the relationship between Information Quality (IQ) and Individual Impact (II). It is noteworthy that the IS used in the experiment is to support decision-making and the information provided by this system are strictly quantitative, which may have caused some conflict in the analysis of the criteria involved in the decision-making process. This is because the criteria of teaching, research, extension and management are interconnected such that one reflects on another. Thus, the opinion of the managers does not depend exclusively on quantitative data, but also of knowledge and value judgment that each manager has about the problem to be solved.
Resumo:
Supply chains have become an important focus for competitive advantage. The performance of a company increasingly depends on its ability to maintain effective and efficient relationships with its suppliers and customers. The extended enterprise (i.e. composed of several partners) needs to be dynamically formed in order to be agile and adaptable. According to the Digital Manufacturing paradigm, companies have to be able to quickly share and disseminate information regarding planning, designing and manufacturing of products. Additionally, they must be responsive to all technical and business determinants, as well as be assessed and certified for guaranteed performance. The current research intends to present a solution for the dynamic composition of the extended enterprise, formed to take advantage of market opportunities quickly and efficiently. A construction model was developed. This construction model consists of: information model, protocol model and process model. The information model has been defined based on the concepts of Supply Chain Operations Reference model (SCOR®). In this model is defined information for negotiating the participation of candidate companies in the dynamic establishment of a network for responding to a given demand for developing and manufacturing products, in seven steps as follows: request for information; request for qualification; alignment of strategy; request for proposal; request for quotation; compatibility of process; and compatibility of system. The protocol model has been elaborated and inspired in the OSI, this model provides a framework for linking customers and suppliers, indicates a sequence to be followed, in order to selecte companies to become suppliers. The process model has been implemented by means of process modeling according to the BPMN standard and, in turn, implemented as a web-based application that runs the process through its several steps, which uses forms to gather data. An application example in the context of the oil and gas industry is used for demonstrating the solution concept.
Resumo:
The routine analysis for quantization of organic acids and sugars are generally slow methods that involve the use and preparation of several reagents, require trained professional, the availability of special equipment and is expensive. In this context, it has been increasing investment in research whose purpose is the development of substitutive methods to reference, which are faster, cheap and simple, and infrared spectroscopy have been highlighted in this regard. The present study developed multivariate calibration models for the simultaneous and quantitative determination of ascorbic acid, citric, malic and tartaric and sugars sucrose, glucose and fructose, and soluble solids in juices and fruit nectars and classification models for ACP. We used methods of spectroscopy in the near infrared (Near Infrared, NIR) in association with the method regression of partial least squares (PLS). Were used 42 samples between juices and fruit nectars commercially available in local shops. For the construction of the models were performed with reference analysis using high-performance liquid chromatography (HPLC) and refractometry for the analysis of soluble solids. Subsequently, the acquisition of the spectra was done in triplicate, in the spectral range 12500 to 4000 cm-1. The best models were applied to the quantification of analytes in study on natural juices and juice samples produced in the Paraná Southwest Region. The juices used in the application of the models also underwent physical and chemical analysis. Validation of chromatographic methodology has shown satisfactory results, since the external calibration curve obtained R-square value (R2) above 0.98 and coefficient of variation (%CV) for intermediate precision and repeatability below 8.83%. Through the Principal Component Analysis (PCA) was possible to separate samples of juices into two major groups, grape and apple and tangerine and orange, while for nectars groups separated guava and grape, and pineapple and apple. Different validation methods, and pre-processes that were used separately and in combination, were obtained with multivariate calibration models with average forecast square error (RMSEP) and cross validation (RMSECV) errors below 1.33 and 1.53 g.100 mL-1, respectively and R2 above 0.771, except for malic acid. The physicochemical analysis enabled the characterization of drinks, including the pH working range (variation of 2.83 to 5.79) and acidity within the parameters Regulation for each flavor. Regression models have demonstrated the possibility of determining both ascorbic acids, citric, malic and tartaric with successfully, besides sucrose, glucose and fructose by means of only a spectrum, suggesting that the models are economically viable for quality control and product standardization in the fruit juice and nectars processing industry.