2 resultados para Material compósito

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents an application of optical fiber sensors based on Bragg gratings integrated to a transtibial prosthesis tube manufactured with a polymeric composite systrem of epoxy resin reinforced with glass fiber. The main objective of this study is to characterize the sensors applied to the gait cycle and changes in the gravity center of a transtibial amputee, trough the analysis of deformation and strengh of the transtibial prosthesis tube. For this investigation it is produced a tube of the composite material described above using the molding method of resin transfer (RTM) with four optical sensors. The prosthesis in which the original tube is replaced is classified as endoskeletal, has vacuum fitting, aluminium conector tube and carbon fiber foot cushioning. The volunteer for the tests was a man of 41 years old, 1.65 meters tall, 72 kilograms and left-handed. His amputation occurred due to trauma (surgical section is in the medial level, and was made below the left lower limb knee). He has been a transtibial prosthesis user for two years and eight months. The characterization of the optical sensors and analysis of mechanical deformation and tube resistance occurred through the gait cycle and the variation of the center of gravity of the body by the following tests: stand up, support leg without the prosthesis, support in the leg with the prosthesis, walk forward and walk backward. Besides the characterization of optical sensors during the gait cycle and the variation of the gravity center in a transtibial amputated, the results also showed a high degree of integration of the sensors in the composite and a high mechanical strength of the material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid population growth is the great motivator for the development of the construction industry and the increased demand for drinking water, resulting in a gradual increase in the generation of solid waste. Thus, this work was carried out in order to recycle industrial and municipal wastes incorporating them into materials for civil construction. The composite produced from water treatment sludge and marble polishing mud, applying lime production waste as a binder, was evaluated for its mechanical performance and its morphological structure. The raw materials were characterized for their chemical composition, mineralogy, morphology, particle size and also the moisture content. With the featured materials nine compositions have been developed varying the content of the water treatment sludge between 25 to 50%, marble polishing mud between 35 to 50% and the lime production waste between 10 to 30%. The composites were subjected to mechanical strength tests, water absorption, chemical and mineralogical composition and morphology. The developed materials presented, on the 3rd day of hydration, maximum strength value of 4.65 MPa, the 7th day 6.36 MPa, on the 14th day 6.74 MPa, the 28th day 5.98 MPa, on the 60th day 8.52 MPa at 90th day 11.75 MPa and 180th day 12.06 MPa. The water absorption values after 28 days of hydration ranged from 16.27% to 26.32% and after 90 days, from 13.57% to 23.56%.