4 resultados para Massa-comprimento
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
Induction of resistance is defined as the activation of a state of resistance against diseases which is induced systemically in plants by the use of biotic or abiotic agents without any modification of the plant genome, occurring non-specific way, by activating genes coding for various plant defense responses. Chitosan is a polymer derived from the deacetylation of chitin, which is found in large quantities in crustacean shell, and studied with the potential to control plant pathogens, both by its direct fungistatic action, as the ability to induce protection of plants, indicating the presence of molecules of elicitoras characteristics. Three experiments with objective of evaluating the potential of chitosan in the seedling resistance induction were developed, beet (Beta vulgaris) seeds, cucumber (Cucumis sativus) seeds and tomato (Solanum lycopersicum) seeds, and the control of Fusarium sp., Rhizoctonia solani K¨uhn e Pythium sp. in vitro conditions. The experimental design was completely randomized, with four replications. Beet seeds, tomato and cucumber were submerged in chitosan solution for 20 minutes, in concentrations of 0.25, 0.5, 1 and 2% in the control and distilled water. Seeds were sown in trays containing Plantmax Florestalr substrate sterilized and inoculated with Fusarium sp., Rhizoctonia solani K¨unh and Pythium sp., respectively for the three cultures. The experiment was conducted for 14 days in growth chamber with controlled temperature (25 C 2 C), light (12 hour photoperiod) and humidity (70% 10%). The evaluations were seed emergency, seedling damping-off, seedling length, fresh weight and activity of the enzymes phenylalanine amˆonia-liase (PAL), chitinase and b-1,3-glucanase. It was also rated the mycelial growth of Fusarium sp., Pythium sp. and R. solani on P.D.A. (Potato-Dextrose and Agar) culture medium containing chitosan at the same concentrations evaluated in seeds. For beet growing, seed treatment with chitosan presented higher emergence and the length of the seedlings, and reduced the percentage of tipping. Treatment with chitosan activated the systemic acquired resistance with expression of chitinase and b-1,3-glucanase enzymes. For the tomato crop in chitosan concentration of 0.25% favored the emergency of seedlings, reduced the incidence of tipping and activated the PAL enzymes, chitinase and b-1,3-glucanase. In cucumber on the concentration of up 0.5% favored seedlings emergence and reduces the incidence of tipping. Chitosan activated the PAL enzymes and b-1,3-glucanase. Chitosan also presented fungistatic action on the initial growth of Pythium sp. and R. solani in vitro conditions, however, such action did not prevail until the end of the experiment. To Fusarium sp. the concentration of chitosan resulted in the reduction of mycelial growth in vitro.
Resumo:
The crops are affected by pests and diseases that decrease productivity. Among them are the damping off of seedlings that can occur in pre and post-emergence. In bean crops, cucumber and beet these diseases occur, being caused by various pathogens, especialy fitopathogenic fungi. Several measures are used for the controle of such diseases, among them, is the chemical seed treatment fungicides. However, society has become increasingly concerned about the quality and food and environmental contamination, generation a growting search for sensitive products to humans and the environment. The use of essential oils to control plant pathogens is an example of alternative tested by science in the search for less aggressive technologies. This study aimed to evaluate the efficiency of the use of essential oil Aloysia citriodora, in control of pathogens causing damping off in beans, cucumber and beet. This thesis was divided in four chapters, the introductory first, and the other addressing the control of Pythium sp. in beans, Sclerotinia sclerotiorum on cucumber, and Fusarium sp. on beet. The methodology consisted of four experiments in each pathosystem, with all the work done at the Federal Technological University of Parana, Campus Dois Vizinhos. In the first experiment evaluated the fungistatic and fungicidal effect of the essential oil of A. citriodora on PDA in vitro in mycelial growth of pathogens studied. In the second experiment evaluated the in vitro effect of essential oil concentrations of A. citriodora in BD medium on microscope slides, on the germination of sporangia Pythium sp. and conidia Fusarium sp., and in Petri dishes with PDA medium, the sclerotia germination speed index of S. sclerotiorum. In the third experiment, we evaluated in germination test in paper roll (PR), the phytotoxic effect or not the use of essential oil concentrations of A. citriodora in dry bean seed, cucumber and beet. The variables used to assess this experiment were the germination percentage, mediun green mass per plant and average length of seedlings. In the fourth experiment we assessed the effect of treating bean seeds, cucumber and beet with essential oil contents of A. citriodora, seeds in their subsequent substrates contamined with pathogens studied, Pythium sp., S. sclerotiorum and Fusarium sp. In this experiment we used the following variables: percentage of emergence, percentage of post-emergence damping off, green average mass per plant, average length per plant and biochemical analyzes. The biochemistry of plant tissues evaluated were as follows: protein content, enzymatic activities of peroxidases, phenylalanine ammonia-liase (PAL), chitinases and β-1,3-glucanases. The in vitro results show that the essential oil has fungistatic and fungicidal effect on mycelial growth, on sporangia germination, conidia and sclerotia of the pathogens studied in this work, wich may be related to its major components, citral and limonene. The oil also exhibits low phytotoxicity to seeds of the species studied, only in beans decreases germination in most studied dosage (0,25%), cucumber also in the higher dosage (0,25%) reduce the length of seedlings, and beet there were no negative effects to the seedlings. In the test in substrate contaminated with the pathogens, the use of essential oil: increased germination and decreased post emergence damping off of beans seedlings; at a concentration of 0,0625% decreases post emergence damping off in cucumber. In biochemical analyzes found an increase in the enzymatic activity of peroxidases and β-1,3-glucanases on beans, and glucanases on cucumber, and increased enzyme activity of peroxidases on beet, showing action in resistance induction at damping off.
Resumo:
The no-tillage system is the predominant model in the agricultural scenario of southern Brazil. Thus, the use of cover crops is significant due to the addition of biomass to protect the soil surface, and contribute to the cycling and/or fixing of nutrients, and in particular nitrogen (N) with liberation for the subsequent culture. Among the cool season species, it was found predominant use of oat to obtain straw to system. Though large quantities input of residue is not the preferred species to precede the corn, cereal with relevant importance in the Paraná Southwest region. It was aimed to evaluate the productivity capacity of corn in no-tillage, in the absence or presence of nitrogen fertilization, on waste of winter cover crops on soil and climatic conditions of the Paraná Southwest region. The installation of no-tillage was held in 2010 in the experimental area belonging to UTFPR, Campus Dois Vizinhos, on a Red Latosol. For the present study, we used data relating to three agricultural years (2012/2013, 2013/2014 and 2014/2015). The experimental design was randomized block design with split plots with three replications. The main plots consisted of systems composed by cover crops (black oat, ryegrass, rye, turnip, vetch, white lupine, aot+vetch consortium and oat+vetch+turnip), preceding corn. In the subplots were used two doses of nitrogen fertilization (0 and 180 kg ha N) coverage in maize.The biggest coverage rates occurred in the consortium with 95% at 62 days after sowing. The residual effect of 180 kg ha cool season plants following year. The residual effect of 180 kg ha systems, reduced in 21% the C/N ratio of poaceae. The common vetch accumulated 32 kg N per ton of MS added. The oat and rye keeps more than 50% waste to the land cover, after 120 days, while the ryegrass and vetch provide low soil protection. Consortium oat+vetch+turnip, vetch and white lupine, released the largest amounts of N, between 52 and 59 kg ha brassica and consortia positively influencing the diameter and length of cobs, number of kernels per row and, total number of grains per ear of corn, in the absence of mineral N. The weight of a thousand grains was increased by 12.4% by the addition of 180 kg ha increase in productivity of grain by the addition of 180 kg ha N, was 2.1 Mg ha 5.6 Mg ha 6.4 Mg ha components when cultivated on vetch. Systems containing fabaceae, brassica and consortium oat+vetch+turnip, predating the corn, in the absence of mineral N, provided similar grain yelds inrelation to the systems with the addition of 180 kg ha Keywords: Cover crops. No-tillage. Grain yield. Zea mays - 1 -1 N, increased 4.8% coverage rate in the of N in corn/cover crops -1 -1 . Fabaceae, -1 N mineral. The average N, in relation to dose 0 kg ha corn kernels on fabaceae, brassica and consortium oat+vetch+turnip, and poaceae the grains in succession. The consortium added amount between 4.0 the DM in the years of study. There was no effect of mineral N rate for corn yield components when cultivated on vetch. Systems containing fabaceae, brassica and consortium oat+vetch+turnip, predating the corn, in the absence of mineral N, provided similar grain yelds inrelation to the systems with the addition of 180 kg ha-1 N.
Resumo:
The instability of environment between years in climates of subtropical regions difficult to obtain peach trees genotypes with wide adaptation and stable production, contributing to poor crop. The climate instability can affect development stages as flower bud and vegetative bud formation. The factors understanding that control the bud formation, presents elementary importance for effective solutions search to these problems. The objective this work is verify the temperature effect, relative humidity and rainfall on bud density and length shoot (Brindilas) and identify genotypes with more adaptability and stability for this character. Was used 12 peach trees genotypes growing in experimental orchard in the Technology Federal of Paraná State University, Campus Pato Branco with Cfa Köppen climate according to the classification. Data of rainfall, hourly temperature were collected by the weather station of Simepar. They were used three plants for genotype (rehearsal), identify five shoots per tree, in May of each year. Were carried analyzes of length shoot CR (cm), count number of flower bud (GF) and vegetative bud (GV). Also calculated the relationship between GF/GV and flower bud density and vegetative bud density. Evaluations were performer annual 2007-2014. With these data adaptability and stability analyzes were performed using Biplot methodology and correlations analyzes (Pearson) with climates variables. They used the weather data to calculate the sums of hours with temperatures below 20 °C, temperatures between 20-25 °C, temperature between 25-30 °C and temperature above 30 °C, considering the period of August 1fst of the previous period to February 28 of the following year. Pearson correlation coefficients were used for path analysis, GF and DGF as basic variables. For CR, GV and GF the highest average occurred in 2009/10 period. The genotypes ‘BRS Kampai’ and ‘BRS Libra’ highest CR. They are considered stable and adapted as the CR genotypes ‘Casc. 967’ and ‘BRS Kampai’. There was negative correlation between CR and GV for Σh <20 ° C, Σh> 30 °C and Σh with URA <50% and positive correlation between these variables and Σh 25-30 °C and Σh with URA> 70%. The evaluation of GV ‘Cons. 681’ and ‘Casc. 1055’ can be considered adapted and stable. The lowest average was presented by the genotype ‘Sta. Áurea’ though the genotype is also stable. In GF evaluation genotypes are considered adapted ‘BRS Bonão’, ‘Casc. 1055’, ‘Cons. 681’ with adaptability to all evaluated period. In path analysis was direct effect Σh 25-30 °C on flower bud density. In evaluating DGV and DGF and the variations are due to genetic effect. The most adapted and stable genotypes for DGV were ‘T. Beauty’, ‘T. Snow’, ‘Casc. 1055’ and ‘Cons. 681’. CR and GV variables are strongly affected by environment. GF is strongly affected by genetic conditions and moderately affected by environment. DGV and DGF are affected basically by genetic conditions.