2 resultados para Least-squares method
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
Considering the social and economic importance that the milk has, the objective of this study was to evaluate the incidence and quantifying antimicrobial residues in the food. The samples were collected in dairy industry of southwestern Paraná state and thus they were able to cover all ten municipalities in the region of Pato Branco. The work focused on the development of appropriate models for the identification and quantification of analytes: tetracycline, sulfamethazine, sulfadimethoxine, chloramphenicol and ampicillin, all antimicrobials with health interest. For the calibration procedure and validation of the models was used the Infrared Spectroscopy Fourier Transform associated with chemometric method based on Partial Least Squares regression (PLS - Partial Least Squares). To prepare a work solution antimicrobials, the five analytes of interest were used in increasing doses, namely tetracycline from 0 to 0.60 ppm, sulfamethazine 0 to 0.12 ppm, sulfadimethoxine 0 to 2.40 ppm chloramphenicol 0 1.20 ppm and ampicillin 0 to 1.80 ppm to perform the work with the interest in multiresidues analysis. The performance of the models constructed was evaluated through the figures of merit: mean square error of calibration and cross-validation, correlation coefficients and offset performance ratio. For the purposes of applicability in this work, it is considered that the models generated for Tetracycline, Sulfadimethoxine and Chloramphenicol were considered viable, with the greatest predictive power and efficiency, then were employed to evaluate the quality of raw milk from the region of Pato Branco . Among the analyzed samples by NIR, 70% were in conformity with sanitary legislation, and 5% of these samples had concentrations below the Maximum Residue permitted, and is also satisfactory. However 30% of the sample set showed unsatisfactory results when evaluating the contamination with antimicrobials residues, which is non conformity related to the presence of antimicrobial unauthorized use or concentrations above the permitted limits. With the development of this work can be said that laboratory tests in the food area, using infrared spectroscopy with multivariate calibration was also good, fast in analysis, reduced costs and with minimum generation of laboratory waste. Thus, the alternative method proposed meets the quality concerns and desired efficiency by industrial sectors and society in general.
Resumo:
The routine analysis for quantization of organic acids and sugars are generally slow methods that involve the use and preparation of several reagents, require trained professional, the availability of special equipment and is expensive. In this context, it has been increasing investment in research whose purpose is the development of substitutive methods to reference, which are faster, cheap and simple, and infrared spectroscopy have been highlighted in this regard. The present study developed multivariate calibration models for the simultaneous and quantitative determination of ascorbic acid, citric, malic and tartaric and sugars sucrose, glucose and fructose, and soluble solids in juices and fruit nectars and classification models for ACP. We used methods of spectroscopy in the near infrared (Near Infrared, NIR) in association with the method regression of partial least squares (PLS). Were used 42 samples between juices and fruit nectars commercially available in local shops. For the construction of the models were performed with reference analysis using high-performance liquid chromatography (HPLC) and refractometry for the analysis of soluble solids. Subsequently, the acquisition of the spectra was done in triplicate, in the spectral range 12500 to 4000 cm-1. The best models were applied to the quantification of analytes in study on natural juices and juice samples produced in the Paraná Southwest Region. The juices used in the application of the models also underwent physical and chemical analysis. Validation of chromatographic methodology has shown satisfactory results, since the external calibration curve obtained R-square value (R2) above 0.98 and coefficient of variation (%CV) for intermediate precision and repeatability below 8.83%. Through the Principal Component Analysis (PCA) was possible to separate samples of juices into two major groups, grape and apple and tangerine and orange, while for nectars groups separated guava and grape, and pineapple and apple. Different validation methods, and pre-processes that were used separately and in combination, were obtained with multivariate calibration models with average forecast square error (RMSEP) and cross validation (RMSECV) errors below 1.33 and 1.53 g.100 mL-1, respectively and R2 above 0.771, except for malic acid. The physicochemical analysis enabled the characterization of drinks, including the pH working range (variation of 2.83 to 5.79) and acidity within the parameters Regulation for each flavor. Regression models have demonstrated the possibility of determining both ascorbic acids, citric, malic and tartaric with successfully, besides sucrose, glucose and fructose by means of only a spectrum, suggesting that the models are economically viable for quality control and product standardization in the fruit juice and nectars processing industry.