4 resultados para Híbrida
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Arquitetura híbrida com DSP e FPGA para implementação de controladores de filtros ativos de potência
Resumo:
The presence of non-linear loads at a point in the distribution system may deform voltage waveform due to the consumption of non-sinusoidal currents. The use of active power filters allows significant reduction of the harmonic content in the supply current. However, the processing of digital control structures for these filters may require high performance hardware, particularly for reference currents calculation. This work describes the development of hardware structures with high processing capability for application in active power filters. In this sense, it considers an architecture that allows parallel processing using programmable logic devices. The developed structure uses a hybrid model using a DSP and an FPGA. The DSP is used for the acquisition of current and voltage signals, calculation of fundamental current related controllers and PWM generation. The FPGA is used for intensive signal processing, such as the harmonic compensators. In this way, from the experimental analysis, significant reductions of the processing time are achieved when compared to traditional approaches using only DSP. The experimental results validate the designed structure and these results are compared with other ones from architectures reported in the literature.
Resumo:
The jabuticaba fruit tree from classified in the Myrtaceae family and Plinia genre. There are about nine species of this fruit tree, that include as most important, Plinia trunciflora (jabuticaba de cabinho), naturally occurring in southwestern Paraná State, Brazil, P. cauliflora (jabuticaba Paulista or Jabuticaba Açu) and P. jaboticaba (Vell) (jabuticaba sabará), with all the over species producing fruit for the industry or fresh consumption. Nevertheless, there aren‟t commercial orchards with this culture, with highest yield part from extractive. This fact can be combined with lack of technical knowledge for the plants produce in the field. As these species are found in the forest, the first point is whether they can adapt to other light intensity conditions. The aim of this work was to identify the adaptive behavior of jabuticaba fruit seedling and tree when they were put in different light intensities and what this can be considered ideal for the growth, as well as, its influence in the leaves secondary compounds production. Two experiments were conducted, with the first involved with the study of the seedlings and the second with plants in the field. The work was carried out at Universidade Tecnológica Federal do Paraná – Câmpus Dois Vizinhos, Paraná State - Brazil. The experimental design was a completely randomized and a block design with four treatments and four replications of 10 seedlings or two plants per plot, according to nursery or orchard conditions, respectively. The treatments were base according to the light intensity. The treatments used were, 1 - full sun, similar the orchard condition, with 0% shading; 2 - side cover with shade cloth and top with transparent plastic, representing a gap forest condition; 3 - side and top cover with shade cloth, representing stage where the forest canopy is closing, focusing only indirect sunlight; 4 - side and top cover with shade cloth, simulating a closed canopy condition, with PPD (photon flux density) of 10% (90% shading); 5 - side and top cover with shade cloth, simulating a more open canopy condition with PPD 65% (35% shading). The growth and development seedling and plant characteristics were evaluated once by month, as also, during time part in the plants the secondary metabolites leaves, soil activity microbiological and the fresh and dry matter root and shoot and, root length from seedlings. For the growth and development of jabuticaba Açú Paulista seedling recommend to use of side cover with shade cloth and top with transparent plastic, representing a gap forest condition. In orchard, for the growth and development of plants jabuticaba Híbrida tree it was recommended the use of side and top cover with shade cloth of some type. For production of secondary metabolites of leaves, the plant must to be full sunlight condition orchard.
Resumo:
The most native fruit trees are belonging to Myrtaceae family, which it have as main marketing potential their fruit. Despite the wide acceptance of the fruits of these native fruit cultura, the establishment of commercial orchards is still necessary, because if it prevails extraction in the forest. To start the cultivo in the orchard, the first point is on the mother plant choice, which should provide superior characteristics when compared to other genotypes. Then, it is necessary to choose the method to can produce satisfactory amount of seedlings and preferably without it to lose the mother plant characteristics. For this, it adopts the asexual thechniques, with option for grafting, cuttings and air layering. These techniques when tested with native fruits tree, it proved limiting in theses results, with this, it should to test other it to recommend its use, especially, those fruit native of higher potential as jabuticaba tree, pitanga tree, sete capote tree and araça amarelo tree. The aim of this study was to test the use of asexual propagation through mini-cuttings in these native fruit trees, according to the time of collection, the mini-cutting length and concentration of IBA, as well as, it to relate the results of rooting with tryptophan extracted at certain times. The work was carried out at Universidade Tecnológica Federal do Paraná – Câmpus Dois Vizinhos, Brazil. The samples were collected each two months. The mini-cutting were prepared with 6 or 8 cm, with a pair of leaves reduced to 25% of the original size. The mini-cuttings had their base immersed in liquid solution of indole-butyric acid (IBA) in the concentrations of 0, 3000 and 6000 mg L-1 and then were placed in tubes containing commercial substrate. The experimental design was completely randomized with factorial 2 x 3 x 6 (mini-cutting length x IBA concentration x time of collection), with four replications, it being each plot varied according to the amount of shoots obtained by period time. After 120 days, the rooting and callus formation (%), average number of roots per mini-cutting and the average length of the roots were evaluated. After 60 days of these evaluations, the survival of mini-cuttings rooted after transplant was evaluated. It was evaluated also the production of mini-cuttings of each size in each period time. At the end of the experiment it was evaluated the percentage of survival of mother plantlets. For analysis of tryptophan was used materials branches, leaves and twigs with leaves, taken from the materials used for the production of mini-cutting. It was recommended for hybrid jabuticaba tree the use mini-cutting with eight cm, treated with 6000 mg L-1 of IBA and collected in June. For jabuticaba tree of cabinho and araça amarelo tree the period for propagation by mini-cuttings should be in August, regardless of IBA concentration and length of the mini-cutting. In the jabuticaba tree sabara and sete capote tree is important to obtain more satisfactory results realized the collect in October or December, with the same independence of other levels tested in other factors. However, for sete capote tree should test other techniques to increase the efficiency of propagation. And with pitanga tree recommended to the collection in June, but with 6cm the application of 3000 mg L-1 of IBA and 8 cm with 6000 mg L-1 of IBA.
Resumo:
The insertion of distributed generation units in the electric power systems have contributed to the popularization of microgrid concepts. With the microgrids, several potential benefits can be achieved in regard to power quality and supply reliability. However, several technical challenges related to the control and operation of microgrids, which are associated with high insertion of generation systems based on static converters, must be overcame. Among the opportunities in the context of microgrids, there is the islanded operation of microgrids temporarily disconnected from the electric power systems and also the autonomous operation of geographically isolated microgrids. The frequency in large power systems is traditionally controlled by the generation units based on traditional synchronous generator. The insertion of distributed generation units based on static power converters may bring difficulties to the frequency control in microgrids, due to the reduction of the equivalent inertia of conventional synchronous generators present in islanded and isolated microgrids. In this context, it becomes necessary the proposition of new operational and control strategies for microgrids control, taking into account the presence of distributed generation units based on full-rated converter. This paper proposes an operational and control strategy for the islanded operation of a winddiesel microgrid with high insertion level of wind generation. The microgrid adopted in this study comprises of a wind energy conversion system with synchronous generator based on full rated converter, a diesel generator (DIG) and a dump load. Due to the high insertion level of wind generation, the wind unit operates in Vf mode and the diesel generator operates in PQ mode. The diesel generator and the dump load are used to regulate the DC-link voltage of the wind generation unit. The proposed control allows the islanded operation of the microgrid only with wind generation, wind-only mode (WO), and with wind-diesel generation, wind-diesel mode (WD). For the wind-only mode, with 100% of penetration level of wind generation, it is proposed a DC-link voltage control loop based on the use of a DC dump load. For the winddiesel mode, it is proposed a DC-link voltage control loop added to the diesel generator, which is connected to the AC side of the microgrid, in coordinated action with the dump load. The proposed operational and control strategy does not require the use of batteries and aims to maximize the energy production from wind generation, ensuring the uninterrupted operation of the microgrid. The results have showed that the operational and control strategy allowed the stable operation of the islanded microgrid and that the DC-link voltage control loop added to the diesel generator and the dump load proved to be effective during the typical variations of wind speed and load.