2 resultados para Fuzzy set theory
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
Requirements specification has long been recognized as critical activity in software development processes because of its impact on project risks when poorly performed. A large amount of studies addresses theoretical aspects, propositions of techniques, and recommended practices for Requirements Engineering (RE). To be successful, RE have to ensure that the specified requirements are complete and correct what means that all intents of the stakeholders in a given business context are covered by the requirements and that no unnecessary requirement was introduced. However, the accurate capture the business intents of the stakeholders remains a challenge and it is a major factor of software project failures. This master’s dissertation presents a novel method referred to as “Problem-Based SRS” aiming at improving the quality of the Software Requirements Specification (SRS) in the sense that the stated requirements provide suitable answers to real customer ́s businesses issues. In this approach, the knowledge about the software requirements is constructed from the knowledge about the customer ́s problems. Problem-Based SRS consists in an organization of activities and outcome objects through a process that contains five main steps. It aims at supporting the software requirements engineering team to systematically analyze the business context and specify the software requirements, taking also into account a first glance and vision of the software. The quality aspects of the specifications are evaluated using traceability techniques and axiomatic design principles. The cases studies conducted and presented in this document point out that the proposed method can contribute significantly to improve the software requirements specification.
Resumo:
The analysis of fluid behavior in multiphase flow is very relevant to guarantee system safety. The use of equipment to describe such behavior is subjected to factors such as the high level of investments and of specialized labor. The application of image processing techniques to flow analysis can be a good alternative, however, very little research has been developed. In this subject, this study aims at developing a new approach to image segmentation based on Level Set method that connects the active contours and prior knowledge. In order to do that, a model shape of the targeted object is trained and defined through a model of point distribution and later this model is inserted as one of the extension velocity functions for the curve evolution at zero level of level set method. The proposed approach creates a framework that consists in three terms of energy and an extension velocity function λLg(θ)+vAg(θ)+muP(0)+θf. The first three terms of the equation are the same ones introduced in (LI CHENYANG XU; FOX, 2005) and the last part of the equation θf is based on the representation of object shape proposed in this work. Two method variations are used: one restricted (Restrict Level Set - RLS) and the other with no restriction (Free Level Set - FLS). The first one is used in image segmentation that contains targets with little variation in shape and pose. The second will be used to correctly identify the shape of the bubbles in the liquid gas two phase flows. The efficiency and robustness of the approach RLS and FLS are presented in the images of the liquid gas two phase flows and in the image dataset HTZ (FERRARI et al., 2009). The results confirm the good performance of the proposed algorithm (RLS and FLS) and indicate that the approach may be used as an efficient method to validate and/or calibrate the various existing equipment used as meters for two phase flow properties, as well as in other image segmentation problems.