2 resultados para Food - Sodium content
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
Sodium is an essential nutrient with important functions in the organism, however, its ingestion in excess may cause various health problems such as arterial hypertension, brain diseases, heart failure and chronic renal failure. In this context, the present study proposes to prepare Minas Padrão cheese with different contents of sodium with the objective of evaluating the effect of the addition of potassium chloride in sensory characteristics and hysicochemical properties, as well as in the proximal composition and in microbiological quality. The cheeses were elaborate in concentrations of 100% of NaCl (C), 80% of NaCl + 20% of KCl (T1), 60% of NaCl + 40% of KCl (T2), 40% of NaCl + 60% of KCl (T3) and 20% of NaCl + 80% of KCl (T4) and stored for 20 days at 10 ºC. The proximal composition and physicochemical was based on the determination of moisture content, fat, protein, ash, chloride, sodium, potassium, titratable acidity and pH of all treatments after 20 days of storage. The microbiological quality of the samples was monitored through the count of Total Coliforms and Escherichia coli, Staphylococcus aureus, Salmonella spp., mold and yeast in the first and fifteenth day of storage. The sensorial characterization was performed by the technique of Free Profile choice. The results showed that the replacement of sodium chloride by potassium in the Minas Padrão cheese in concentration higher than 40% presented significantly higher moisture contents. Cheese with a reduction greater than 60% of sodium obtained significantly effect in the titratable acidity, presenting higher values compared to the other treatments. The cheese with 20% of salt replacement did not differ statistically in relation to the control. When the proportion of substituent was increased, a significant reduction of the sodium content of up to 73% was observed. As the sodium was replaced by potassium in cheese, the potassium content increased significantly, stablishing a reduction of 82% in relation to the control. There was no effect to sodium substitution by potassium in fat, protein, ash and chlorides, as well as the pH values. The microbiological results were in accordance with the current legislation, therefore suitable to be eaten. According to the Free Profile Choice technique it was observed that the control C cheese (100% of NaCl) showed results very close to the other treatments, differing only in flavor attributes. The replacement of sodium by potassium in proportions of 20% contributed to a bitter taste detected by the tasters. Whereas, the appearance, flavor and texture attributes showed no significant differences compared to the Minas Padrão cheese.
Resumo:
Headcheese is a meat sausage originated from Europe made from hog slaughter by-products. It is a much appreciated product in the South of Brazil which is increasingly established in the market, however it does not have official regulations yet. This study aimed to present the physicochemical characterization of headcheese in a western Santa Catarina industry supervised by Companhia Integrada de Desenvolvimento Agrícola de Santa Catarina and assess 10 different brands to find the relationship between chemical composition and texture profile analysis (TPA). Thus, the chemical composition, energy value, total nitrite, lipid oxidation and physical parameters (color and texture) were evaluated. The product exhibited great variability in moisture content, lipid and protein because the different formulations, processing and intrinsic and extrinsic characteristics of raw material. The utilization of offal provided higher cholesterol and iron levels, and the high content of collagen was accountable for the shear force responses (7.84 ± 1.68 N). The product showed higher amount of sodium, due to the use of additives, but calcium levels were compatible with other sausages. There was a predominance of polyunsaturated fatty acids and polyunsaturated fatty acids/saturated fatty acids ratio was more favorable than other sausage in the same category. Nitrite assured preservation effects and thus lower product levels of oxidation were observed. The high Water Activity and pH 6.5 showed that the product is susceptible to growth of pathogens and requires cooling for preservation. Its brownish occurred due to cooking and production of metmyoglobin. There was a strong positive correlation between collagen and attributes of TPA, especially for chewiness (r = 0.855). The use of Hierarchical Cluster Analysis and Principal Component Analysis were able to separate three groups based on the amount of collagen and texture attributes, especially hardness, gumminess and chewiness.