1 resultado para Extrações seriadas
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
This study aimed to assess the genetic inheritance, determine the better DNA isolation protocol for this species and to identify molecular markers associated with the Wild Poinsettia (Euphorbia heterophylla L.) resistance ALS- and PROTOX- inhibiting herbicides and. The genetic inheritance of resistance was determined from crosses between E. heterophylla biotypes susceptible (S) and resistant (R), backcrosses and F2 generation. The complete dominance of resistance was confirmed with dose response curves. Ten adjusted methods for DNA isolation described in the literature were tested. The specific primers for ALS and PROTOX genes were designed from the consensus DNA sequence of these genes, obtained by aligning the gene sequences of the species Manihot esculenta and Ricinus communis L. Additionally, it was assessed the transferability of twenty SSR (simple sequence repeat) markers designed for Manihot esculenta, because among the species of Euphorbiaceae with more developed SSRs markers, because it is the closest relative phylogenetic species of E. heterophylla. Regarding genetic inheritance, the frequencies observed in the F1, F2, RCs and RCr did not differ significantly from the expected frequencies for a trait controlled by two dominant genes for multiple resistance and a single dominant gene for simple resistance to ALS- and PROTOX-inhibiting herbicides. The similar levels of resistance to dosage up to 2000 g i.a. ha-1 of fomesafen and dosage up to 800 g i.a. ha-1 of imazethapyr observed in F1 (heterozygous) and homozygous R biotype confirm the complete dominance of resistance to PROTOX- and ALS-inhibiting herbicides, respectively. The 0.2%BME protocol allowed the isolation of 7,083 ng μL-1 DNA, significantly (P=0.05) higher than other methods. Co-isolation of phenolic compounds was observed in FENOL and 3%BME+TB methods, but the addition of polyvinylpyrrolidone (PVP40) in the protocol extraction buffer 3%BME+TA solved this problem. The primers designed for ALS and PROTOX genes amplified but not showed no visible polymorphism in agarose gel between the S and R biotypes of E. heterophylla. Regarding the SSR transferability, ten markers were transferred to E. heterophylla, however, these six primers showed polymorphism among S and R biotypes.