2 resultados para Especificações
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
Distributed generation systems must fulfill standards specifications of current harmonics injected to the grid. In order to satisfy these grid requirements, passive filters are connected between inverter and grid. This work compares the characteristic response of the traditional inductive (L) filter with the inductive-capacitive-inductive (LCL) filter. It is shown that increasing the inductance L leads to a good ripple current suppression around the inverter switching frequency. The LCL filter provides better harmonic attenuation and reduces the filter size. The main drawback is the LCL filter impedance, which is characterized by a typical resonance peak, which must be damped to avoid instability. Passive or active techniques can be used to damp the LCL resonance. To address this issue, this dissertation presents a comparison of current control for PV grid-tied inverters with L filter and LCL filter and also discuss the use of active and passive damping for different regions of resonance frequency. From the mathematical models, a design methodology of the controllers was developed and the dynamic behavior of the system operating in closed loop was investigated. To validate the studies developed during this work, experimental results are presented using a three-phase 5kW experimental platform. The main components and their functions are discussed in this work. Experimental results are given to support the theoretical analysis and to illustrate the performance of grid-connected PV inverter system. It is shown that the resonant frequency of the system, and sampling frequency can be associated in order to calculate a critical frequency, below which is essential to perform the damping of the LCL filter. Also, the experimental results show that the active buffer per virtual resistor, although with a simple development, is effective to damp the resonance of the LCL filter and allow the system to operate stable within predetermined parameters.
Resumo:
Requirements specification has long been recognized as critical activity in software development processes because of its impact on project risks when poorly performed. A large amount of studies addresses theoretical aspects, propositions of techniques, and recommended practices for Requirements Engineering (RE). To be successful, RE have to ensure that the specified requirements are complete and correct what means that all intents of the stakeholders in a given business context are covered by the requirements and that no unnecessary requirement was introduced. However, the accurate capture the business intents of the stakeholders remains a challenge and it is a major factor of software project failures. This master’s dissertation presents a novel method referred to as “Problem-Based SRS” aiming at improving the quality of the Software Requirements Specification (SRS) in the sense that the stated requirements provide suitable answers to real customer ́s businesses issues. In this approach, the knowledge about the software requirements is constructed from the knowledge about the customer ́s problems. Problem-Based SRS consists in an organization of activities and outcome objects through a process that contains five main steps. It aims at supporting the software requirements engineering team to systematically analyze the business context and specify the software requirements, taking also into account a first glance and vision of the software. The quality aspects of the specifications are evaluated using traceability techniques and axiomatic design principles. The cases studies conducted and presented in this document point out that the proposed method can contribute significantly to improve the software requirements specification.