12 resultados para Engenharia biomedica - Equipamentos e acessórios
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
An ideal biomaterial for dental implants must have very high biocompatibility, which means that such materials should not provoke any serious adverse tissue response. Also, used metal alloys must have high fatigue resistance due the masticatory force and good corrosion resistance. These properties are rendered by using alpha and beta stabilizers, such as Al, V, Ni, Fe, Cr, Cu, Zn. Commercially pure titanium (TiCP) is used often for dental and orthopedic implants manufacturing. However, sometimes other alloys are employed and consequently it is essential to research the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of stabilizing elements within existing limits and standards for such materials. For alloy characterization and identification of stabilizing elements it was used EDXRF technique. This method allows to perform qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- rays tubes (AMPTEK Mini X model with Ag and Au targets), a X-123SDD detector (AMPTEK) and a 0.5mm Cu collimator, developed due to the sample characteristics. The other experimental setup used as a complementary technique is composed of an X-ray tube with a Mo target, collimator 0.65mm and XFlash (SDD) detector - ARTAX 200 (BRUKER). Other method for elemental characterization by energy dispersive spectroscopy (EDS) applied in present work was based on Scanning Electron Microscopy (SEM) EVO® (Zeeis). This method also was used to evaluate the surface microstructure of the sample. The percentual of Ti obtained in the elementary characterization was among 93.35 ± 0.17% and 95.34 ± 0.19 %. These values are considered below the reference limit of 98.635% to 99.5% for TiCP, established by Association of metals centric materials engineers and scientists Society (ASM). The presence of elements Al and V in all samples also contributed to underpin the fact that are not TiCP implants. The values for Al vary between 6.3 ± 1.3% and 3.7 ± 2.0% and for V, between 0.26 ± 0.09% and 0.112 ± 0.048%. According to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP and in accordance with the National Institute of Standards and Technology (NIST), the presence of Al should be <0.01% and V should be of 0.009 ± 0.001%. Obtained results showed that implant materials are not exactly TiCP but, were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The quantitative analysis and elementary characterization of experimental results shows that the best accuracy and precision were reached with X-Ray tube with Au target and collimator of 0.5 mm. Use of technique of EDS confirmed the results of EDXRF for Ti-Al-V alloy. Evaluating the surface microstructure by SEM of the implants, it was possible to infer that ten of the thirteen studied samples are contemporaneous, rough surface and three with machined surface.
Resumo:
The aim of this study was to evaluate the effective dose received by patients undergoing CCTA in both acquisition methods in the period June 1st to October 30th, 2013. Data collection was performed at the Clínica Sabedotti in Ponta Grossa/PR, with General Electric Equipment VCT XT, 64 detections lines. The effective dose was measured from the thirty cases randomly selected of Picture Archival and Communication System – PACS, reported by Dose Lenght Product (DLP) equipment for each examination and the conversion factor (EDLP) set by the European Commission for cardiac region (EDLP = 0.014). The results showed significant differences in radiation dose delivered to the patient according to the employee acquisition method, Retrospective or Prospective of ECG.
Resumo:
This study developed the Magnetic Proprioceptive Stimulator – MPS at the Technological Federal University of Parana - UTFPR to stimulate, record and quantify the proprioceptive activity of the shoulder joint, using permanent magnets. A pilot study was conducted to investigate the proprioceptive stimulation generated by MPS. The results of this study show that the magnetic and mechanical forces generated by permanent magnets can change the static and dynamic stability of the shoulder joint. The angular changes of the shoulder joint during the stimulation of proprioception were photographed, videotaped and analyzed by vector editing program. The joint movements caused by the action of the magnets were recorded by an optical sensor installed in the MPS and displayed in a graphical interface for analyzing the proprioceptive dynamics. The study concluded that the Magnetic Proprioceptive Stimulator is safe, effective to stimulate proprioception and features high economic viability.
Resumo:
This study aimed to develop a device to measure RR intervals, which have high correlation with the values of the gold standard device of electrocardiograph (ECG), by the time domain and frequency domain indices. To this end, a study was conducted with 18 students of Jiu-Jitsu, males with 35.5 ± 8.6 years, at least a weekly frequency of 3 times and one year training. The location was at the academy Gracie Barra de Curitiba PR. They underwent an examination at rest for a period of 7 minutes and then the results were converted into heart rate variability (HRV) and analyzed by the indexes in the time domain and the frequency domain. The results were compared statistically using the Pearson test and intraclass correlation (ICC) and according to them proves to be viable the development of this equipment, which is highly correlated and excellent reproducibility for measuring the RR intervals.
Medidas de concentração de radônio proveniente de argamassas de cimento portland, gesso e fosfogesso
Resumo:
Portland cement being very common construction material has in its composition the natural gypsum. To decrease the costs of manufacturing, the cement industry is substituting the gypsum in its composition by small quantities of phosphogypsum, which is the residue generated by the production of fertilizers and consists essentially of calcium dihydrate and some impurities, such as fluoride, metals in general, and radionuclides. Currently, tons of phosphogypsum are stored in the open air near the fertilizer industries, causing contamination of the environment. The 226 Ra present in these materials, when undergoes radioactive decay, produces the 222Rn gas. This radioactive gas, when inhaled together with its decay products deposited in the lungs, produces the exposure to radiation and can be a potential cause of lung cancer. Thus, the objective of this study was to measure the concentration levels of 222Rn from cylindrical samples of Portland cement, gypsum and phosphogypsum mortar from the state of Paraná, as well as characterizer the material and estimate the radon concentration in an environment of hypothetical dwelling with walls covered by such materials. Experimental setup of 222Rn activity measurements was based on AlphaGUARD detector (Saphymo GmbH). The qualitative and quantitative analysis was performed by gamma spectrometry and EDXRF with Au and Ag targets tubes (AMPTEK), and Mo target (ARTAX) and mechanical testing with x- ray equipment (Gilardoni) and the mechanical press (EMIC). Obtained average values of radon activity from studied materials in the air of containers were of 854 ± 23 Bq/m3, 60,0 ± 7,2 Bq/m3 e 52,9 ± 5,4 Bq/m3 for Portland cement, gypsum and phosphogypsum mortar, respectively. These results extrapolated into the volume of hypothetical dwelling of 36 m3 with the walls covered by such materials were of 3366 ± 91 Bq/m3, 237 ± 28 Bq/m3 e 208 ± 21 Bq/m3for Portland cement, gypsum and phosphogypsum mortar, respectively. Considering the limit of 300 Bq/m3 established by the ICRP, it could be concluded that the use of Portland cement plaster in dwellings is not secure and requires some specific mitigation procedure. Using the results of gamma spectrometry there were calculated the values of radium equivalent activity concentrations (Raeq) for Portland cement, gypsum and phosphogypsum mortar, which were obtained equal to 78,2 ± 0,9 Bq/kg; 58,2 ± 0,9 Bq/kg e 68,2 ± 0,9 Bq/kg, respectively. All values of radium equivalent activity concentrations for studied samples are below the maximum level of 370 Bq/kg. The qualitative and quantitative analysis of EDXRF spectra obtained with studied mortar samples allowed to evaluate quantitate and the elements that constitute the material such as Ca, S, Fe, and others.
Resumo:
The objective of this study was to analyze the electrochemical and acid-base disorders in high performance athletes during the World Karate Championship hosted by the WKO (World Karate Organization) in 2014. In this study 19 male athletes were analyzed (age 34 ± 8), black belts and with over 5 years of experience in the sport. Capillary blood samples from the digital pulp of the finger were collected in three stages: rest, 5 minutes after and 10 minutes after fighting (kumite). The sample was analyzed using blood gas analyzer GEM Premier 3000, using the parameters pH, Na+, K+, Ca2+, lactate e HCO3−. The values related to acid-base disturbance presented statistical differences (p <0.05) in most of the collected moments. The lactate levels found were 2.77 ± 0.97mmol / L in rest, 6.57 ± 2.1 for 5 minutes after and 4.06 ± 1.55 for 10 minutes after combat. The samples collected for the electrolytic markers showed no statistical differences in their values (p <0.05). Through the data collected, we conjecture that the sport can be characterized as a high-intensity exercise and with a predominance of the glycolytic system. The analysis of acid-base disturbance is an efficient method to assist in the control of training loads.
Resumo:
This study has as general aim to propose a spatial map of doses as an auxiliary tool in assessing the need for optimization of the workplace in nuclear medicine services. As specific aims, we assessed the workers individual dosimetry; we analyzed the facilities of the nuclear medicine services; and we evaluated environment exposure rates. The research is characterized as a case study, with an exploratory and explanatory nature. It was conducted in three Nuclear Medicine Services, all established in the Northwest of the Paraná State. Results indicated that the evaluated dose rates and workers dosimetry, in all the dependencies of the surveyed services, are within the limits of annual doses. However some exceeded the limits recommended in the standard CNEN-NN 3:01 (2014). It was concluded that the spatial map dose is an important tool for nuclear medicine services because it facilitates the visualization of areas with highest concentration of radiation, and also helps in the constant review of these measures and resources, aiding in the identification of any failures and shortcomings, providing resources to correct any issues and prevent their repetition. The spatial map dose is also important for the regular inspection, evaluating if the radiation protection objectives are being met.
Resumo:
Spasticity is a common disorder in people who have upper motor neuron injury. The involvement may occur at different levels. The Modified Ashworth Scale (MAS) is the most used method to measure involvement levels. But it corresponds to a subjective evaluation. Mechanomyography (MMG) is an objective technique that quantifies the muscle vibration during the contraction and stretching events. So, it may assess the level of spasticity accurately. This study aimed to investigate the correlation between spasticity levels determined by MAS with MMG signal in spastic and not spastic muscles. In the experimental protocol, we evaluated 34 members of 22 volunteers, of both genders, with a mean age of 39.91 ± 13.77 years. We evaluated the levels of spasticity by MAS in flexor and extensor muscle groups of the knee and/or elbow, where one muscle group was the agonist and one antagonist. Simultaneously the assessment by the MAS, caught up the MMG signals. We used a custom MMG equipment to register and record the signals, configured in LabView platform. Using the MatLab computer program, it was processed the MMG signals in the time domain (median energy) and spectral domain (median frequency) for the three motion axes: X (transversal), Y (longitudinal) and Z (perpendicular). For bandwidth delimitation, we used a 3rd order Butterworth filter, acting in the range of 5-50 Hz. Statistical tests as Spearman's correlation coefficient, Kruskal-Wallis test and linear correlation test were applied. As results in the time domain, the Kruskal-Wallis test showed differences in median energy (MMGME) between MAS groups. The linear correlation test showed high linear correlation between MAS and MMGME for the agonist muscle as well as for the antagonist group. The largest linear correlation occurred between the MAS and MMG ME for the Z axis of the agonist muscle group (R2 = 0.9557) and the lowest correlation occurred in the X axis, for the antagonist muscle group (R2 = 0.8862). The Spearman correlation test also confirmed high correlation for all axes in the time domain analysis. In the spectral domain, the analysis showed an increase in the median frequency (MMGMF) in MAS’ greater levels. The highest correlation coefficient between MAS and MMGMF signal occurred in the Z axis for the agonist muscle group (R2 = 0.4883), and the lowest value occurred on the Y axis for the antagonist group (R2 = 0.1657). By means of the Spearman correlation test, the highest correlation occurred between the Y axis of the agonist group (0.6951; p <0.001) and the lowest value on the X axis of the antagonist group (0.3592; p <0.001). We conclude that there was a significantly high correlation between the MMGME and MAS in both muscle groups. Also between MMG and MAS occurred a significant correlation, however moderate for the agonist group, and low for the antagonist group. So, the MMGME proved to be more an appropriate descriptor to correlate with the degree of spasticity defined by the MAS.
Resumo:
One of the challenges to biomedical engineers proposed by researchers in neuroscience is brain machine interaction. The nervous system communicates by interpreting electrochemical signals, and implantable circuits make decisions in order to interact with the biological environment. It is well known that Parkinson’s disease is related to a deficit of dopamine (DA). Different methods has been employed to control dopamine concentration like magnetic or electrical stimulators or drugs. In this work was automatically controlled the neurotransmitter concentration since this is not currently employed. To do that, four systems were designed and developed: deep brain stimulation (DBS), transmagnetic stimulation (TMS), Infusion Pump Control (IPC) for drug delivery, and fast scan cyclic voltammetry (FSCV) (sensing circuits which detect varying concentrations of neurotransmitters like dopamine caused by these stimulations). Some softwares also were developed for data display and analysis in synchronously with current events in the experiments. This allowed the use of infusion pumps and their flexibility is such that DBS or TMS can be used in single mode and other stimulation techniques and combinations like lights, sounds, etc. The developed system allows to control automatically the concentration of DA. The resolution of the system is around 0.4 µmol/L with time correction of concentration adjustable between 1 and 90 seconds. The system allows controlling DA concentrations between 1 and 10 µmol/L, with an error about +/- 0.8 µmol/L. Although designed to control DA concentration, the system can be used to control, the concentration of other substances. It is proposed to continue the closed loop development with FSCV and DBS (or TMS, or infusion) using parkinsonian animals models.
Resumo:
In this work, a platform to the conditioning, digitizing, visualization and recording of the EMG signals was developed. After the acquisition, the analysis can be done by signal processing techniques. The platform consists of two modules witch acquire electromyography (EMG) signals by surface electrodes, limit the interest frequency band, filter the power grid interference and digitalize the signals by the analogue-to- digital converter of the modules microcontroller. Thereby, the data are sent to the computer by the USB interface by the HID specification, displayed in real-time in graphical form and stored in files. As processing resources was implemented the operations of signal absolute value, the determination of effective value (RMS), Fourier analysis, digital filter (IIR) and the adaptive filter. Platform initial tests were performed with signal of lower and upper limbs with the aim to compare the EMG signal laterality. The open platform is intended to educational activities and academic research, allowing the addition of other processing methods that the researcher want to evaluate or other required analysis.
Resumo:
Following a drop in estrogen in the period of menopause some women begin to lose bone mass more than 1% per year reaching the end of five years with loss greater than 25%. In this regard, factors such as older age, low calcium intake and premature menopause favor the onset of osteoporosis. Preventive methods such as nutritional counseling to a proper diet and the support of technology through applications that assess dietary intake are essential. Thus, this study aimed to develop an application for Android® platform focused on the evaluation of nutritional and organic conditions involved in bone health and risks for developing osteoporosis in postmenopausal women. To achieve this goal we proceeded to a study of 72 women aged 46-79 years, from the physical exercise for bone health of the Laboratory for Research in Biochemistry and Densitometry the Federal Technological University of Paraná program. Data were collected in the second half of 2014 through tests Bone Densitometry and Body Composition, Blood Tests, Anthropometric data and Nutrition Assessment. The study included women with a current diagnosis of osteopenia or osteoporosis primary, aged more than 45 years postmenopausal. For the assessment of bone mineral density and body composition used the device Absorptiometry Dual Energy X-ray (DXA) brand Hologic Discovery TM Model A. For anthropometric assessment was included to body mass, height, abdominal circumference, Waist circumference and hip circumference. The instrument for assessing food consumption was used Recall 24 hours a day (24HR). The estimated intake of energy and nutrients was carried from the tabulation of the food eaten in the Software Diet Pro 4®. In a sub sample of 30 women with osteopenia / osteoporosis serum calcium and alkaline phosphatase tests were performed. The results demonstrated a group of women (n = 30) average calcium intake of 570mg / day (± 340). The analysis showed a mean serum calcium within the normal range (10,20mg / dl ± 0.32) and average values and slightly increased alkaline phosphatase (105.40 U / L ± 23.70). Furthermore, there was a significant correlation between the consumption of protein and the optimal daily intake of calcium (0.375 p-value 0.05). Based on these findings, we developed an application early stage in Android® platform operating system Google®, being called OsteoNutri. We chose to use Java Eclipse® where it was executed Android® version of the project; choice of application icons and setting the visual editor for building the application layouts. The DroidDraw® was used for development of the three application GUIs. For practical tests we used a cell compatible with the version that was created (4.4 or higher). The prototype was developed in conjunction with the Group and Instrumentation Applications Development (GDAI) of the Federal Technological University of Paraná. So this application can be considered an important tool in dietary control, allowing closer control consumption of calcium and dietary proteins.
Resumo:
Forensic speaker comparison exams have complex characteristics, demanding a long time for manual analysis. A method for automatic recognition of vowels, providing feature extraction for acoustic analysis is proposed, aiming to contribute as a support tool in these exams. The proposal is based in formant measurements by LPC (Linear Predictive Coding), selectively by fundamental frequency detection, zero crossing rate, bandwidth and continuity, with the clustering being done by the k-means method. Experiments using samples from three different databases have shown promising results, in which the regions corresponding to five of the Brasilian Portuguese vowels were successfully located, providing visualization of a speaker’s vocal tract behavior, as well as the detection of segments corresponding to target vowels.