1 resultado para Corante lipossolúvel

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The textile industry generates a large volume of high organic effluent loading whoseintense color arises from residual dyes. Due to the environmental implications caused by this category of contaminant there is a permanent search for methods to remove these compounds from industrial waste waters. The adsorption alternative is one of the most efficient ways for such a purpose of sequestering/remediation and the use of inexpensive materials such as agricultural residues (e.g., sugarcane bagasse) and cotton dust waste (CDW) from weaving in their natural or chemically modified forms. The inclusion of quaternary amino groups (DEAE+) and methylcarboxylic (CM-) in the CDW cellulosic structure generates an ion exchange capacity in these formerly inert matrix and, consequently, consolidates its ability for electrovalent adsorption of residual textile dyes. The obtained ionic matrices were evaluated for pHpcz, the retention efficiency for various textile dyes in different experimental conditions, such as initial concentration , temperature, contact time in order to determine the kinetic and thermodynamic parameters of adsorption in batch, turning comprehensive how does occur the process, then understood from the respective isotherms. It was observed a change in the pHpcz for CM--CDW (6.07) and DEAE+-CDW (9.66) as compared to the native CDW (6.46), confirming changes in the total surface charge. The ionized matrices were effective for removing all evaluated pure or residual textile dyes under various tested experimental conditions. The kinetics of the adsorption process data had best fitted to the model a pseudosecond order and an intraparticle diffusion model suggested that the process takes place in more than one step. The time required for the system to reach equilibrium varied according to the initial concentration of dye, being faster in diluted solutions. The isotherm model of Langmuir was the best fit to the experimental data. The maximum adsorption capacity varied differently for each tested dye and it is closely related to the interaction adsorbent/adsorbate and dye chemical structure. Few dyes obtained a linear variation of the balance ka constant due to the inversion of temperature and might have influence form their thermodynamic behavior. Dyes that could be evaluated such as BR 18: 1 and AzL, showed features of an endothermic adsorption process (ΔH° positive) and the dye VmL presented exothermic process characteristics (ΔH° negative). ΔG° values suggested that adsorption occurred spontaneously, except for the BY 28 dye, and the values of ΔH° indicated that adsorption occurred by a chemisorption process. The reduction of 31 to 51% in the biodegradability of the matrix after the dye adsorption means that they must go through a cleaning process before being discarded or recycled, and the regeneration test indicates that matrices can be reused up to five times without loss of performance. The DEAE+-CDW matrix was efficient for the removal of color from a real textile effluent reaching an UV-Visible spectral area decrease of 93% when applied in a proportion of 15 g ion exchanger matrix L-1 of colored wastewater, even in the case of the parallel presence of 50 g L-1 of mordant salts in the waste water. The wide range of colored matter removal by the synthesized matrices varied from 40.27 to 98.65 mg g-1 of ionized matrix, obviously depending in each particular chemical structure of the dye upon adsorption.