2 resultados para Café São Luiz. Memória. Natal
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
In the industrial production of soluble coffee, huge amounts of extracted coffee residues are generated; onaverage, for eachtonne of green coffee extracted, 480 kg of coffee ground waste is produced. This is a solid residue currently used to generate energy at the steam boilers from the soluble coffee industry. Some is also used or as fertilizer on agriculture fields. Seeking a better end use, the work reported here aimed to study the viability of hydrolyzing the coffee ground residue for the production of carbohydrates. Hydrolysis was undertaken with hydrochloric acid at different temperatures and pressures, using a water bath or autoclave.An enzymatic hydrolysis with Viscozyme Lwas developed using Whatman filter paper No1 and the optimal conditions were determined using a rotational central composite experimental design (DCCR).The best conditions to hydrolyze filter paper cellulose were 50 FBG (Fungal β-glucanase) of Viscozyme L at pH 4.0 for 1.0 h and 45 ºC. The ground coffee was hydrolyzed under the same conditions as described above for filter paper, however this enzymatic hydrolysis was not efficient. A combination of enzymatic hydrolysis as a pre-treatment for the ground coffee followed by acid hydrolysis using HCl conducted in an autoclave (120 C for 2.0 h) resulted in higher production of glucose as analyzed by HPLC. Another end use of the ground coffee evaluated was as source of substrate in the culture medium to grow Botryosphaeria rhodina MAMB-05 to produce the enzymes laccase and cellulase. Highest enzyme titres obtained were with 8% (w/v) coffee grounds to which was added a minimum salts medium(Vogel), under agitation conditions (180 rpm) at 28ºC. The phenolic compounds present in the coffee grounds appear to have induced laccase by Botryosphaeria rhodina.
Resumo:
The growing demand for large-scale virtualization environments, such as the ones used in cloud computing, has led to a need for efficient management of computing resources. RAM memory is the one of the most required resources in these environments, and is usually the main factor limiting the number of virtual machines that can run on the physical host. Recently, hypervisors have brought mechanisms for transparent memory sharing between virtual machines in order to reduce the total demand for system memory. These mechanisms “merge” similar pages detected in multiple virtual machines into the same physical memory, using a copy-on-write mechanism in a manner that is transparent to the guest systems. The objective of this study is to present an overview of these mechanisms and also evaluate their performance and effectiveness. The results of two popular hypervisors (VMware and KVM) using different guest operating systems (Linux and Windows) and different workloads (synthetic and real) are presented herein. The results show significant performance differences between hypervisors according to the guest system workloads and execution time.