8 resultados para CNPQ::ENGENHARIAS::ENGENHARIA CIVIL

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid population growth is the great motivator for the development of the construction industry and the increased demand for drinking water, resulting in a gradual increase in the generation of solid waste. Thus, this work was carried out in order to recycle industrial and municipal wastes incorporating them into materials for civil construction. The composite produced from water treatment sludge and marble polishing mud, applying lime production waste as a binder, was evaluated for its mechanical performance and its morphological structure. The raw materials were characterized for their chemical composition, mineralogy, morphology, particle size and also the moisture content. With the featured materials nine compositions have been developed varying the content of the water treatment sludge between 25 to 50%, marble polishing mud between 35 to 50% and the lime production waste between 10 to 30%. The composites were subjected to mechanical strength tests, water absorption, chemical and mineralogical composition and morphology. The developed materials presented, on the 3rd day of hydration, maximum strength value of 4.65 MPa, the 7th day 6.36 MPa, on the 14th day 6.74 MPa, the 28th day 5.98 MPa, on the 60th day 8.52 MPa at 90th day 11.75 MPa and 180th day 12.06 MPa. The water absorption values after 28 days of hydration ranged from 16.27% to 26.32% and after 90 days, from 13.57% to 23.56%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The job security issue is crucial for the development of construction due to the need to ensure the health of workers, which is done by means of laws and production management. Thus, among various other laws, was enacted NR-18, in order to ensure the worker's minimum conditions for the development work. Despite legislative developments on the subject, they have become ineffective against the excessive number of accidents in the construction industry, bringing the company to greater in ensuring the health and safety of its workers. In view of this need for improvement of working environment in a general appearance, both for purposes of ensuring the law obedience as comfort for workers and quality of the organization, the System Health Management and Safety (OHSMS) is a valid tool demonstrates the evolution of business management, as well as OHSAS 18001 which proposes to ensure the efficiency and integration of a system geared to safety and health at work by means of implements and adaptations of it, in order to bring significant improvements to conditions of work, especially in the form of a new culture to be adopted by the company. Addressing the problem, this paper aims to develop a management system by OHSAS 18001 which is consistent with the terms of NR-18 as it is this integration of OHSMS Management System of the company as a usual practice of that aims at an improvement of work safety in the business of Buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinforced concrete creep is a phenomenon of great importance. Despite being appointed as the main cause of several pathologies, its effects are yet considered in a simplified way by the structural designers. In addition to studying the phenomenon in reinforced concrete structures and its current account used in the structural analysis, this paper compares creep strains at simply supported reinforced concrete beams in analytical and in experimental forms with the finite element method (FEM) simulation results. The strains and deflections obtained through the analytical form were calculated with the Brazilian code NBR 6118 (2014) recommendations and the simplified method from CEB-FIP 90 and the experimental results were extracted from tests available in the literature. Finite element simulations are performed using ANSYS Workbench software, using its 3D SOLID 186 elements and the structure symmetry. Analyzes of convergence using 2D PLANE 183 elements are held as well. At the end, it is concluded that FEM analyses are quantitative and qualitative efficient for the estimation of this non-linearity and that the method utilized to obtain the creep coefficients values is sufficiently accurate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supersulfated cement (CSS) basically consist of up to 90% blast furnace slag, 10-20% of a source of calcium sulfate and a small amount of alkali activator, covered by European standard EN 15743/2010. Because of this SSC are considered "green cement" low environmental impact. The source of calcium sulfate used in the preparation of CSS can be obtained from natural sources, such as gypsum or from alternative sources (industrial products), such as phosphogypsum. The phosphogypsum is a by-product of the fertilizer industry, used in the production of phosphoric acid. In this process the phosphate rock is treated with sulfuric acid to give as the major product phosphoric acid (H3PO4), gypsum and a small amount of hydrofluoric acid. The chemical composition of gypsum is basically calcium sulfate dihydrate (CaSO4.2H2O), similar to gypsum, because it can be used in this type of cement. To become anhydrous, the calcination of gypsum is necessary. The availability of the source of calcium sulfate to react with the slag is dependent on its solubility that is directly related to its calcination temperature. The solubility of the anhydrous gypsum decreases with increasing calcination temperature. This study investigated the influence of temperature of calcination of phosphogypsum on the performance of CSS. Samples were prepared with 10 and 20% of phosphogypsum calcinated at 350 to 650 ° C using KOH as an alkaline activator at three different concentrations (0.2, 0.5 and 0.8%). The results showed that all mortars presented the minimum values required by EN 15743/2010 for 7 and 28 days of hydration. In general CSS containing 10% phosphogypsum showed slightly better compressive strength results using a lower calcination temperature (350 °C) and curing all ages. The CSS containing 20% of calcined gypsum at 650 °C exhibit satisfactory compressive strenght at 28 days of hydration, but at later ages (56 to 90 days) it strongly reduced. This indicates that the calcination temperature of phosphogypsum has a strong influence on the performance of the CSS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban paving is of paramount importance for a city, both socioeconomic and in quality of life. The urban flooring not different so-called road surface are constituted by a set of horizontal layers, overlaid on the ground, which have the main function of supporting the actions induced by the vehicle redistributing the stresses transmitted to the ground. Soils are important materials for the execution of paving, mainly because they are part of the basic structure of the floor and mostly be available in abundance, with a very low cost, however, their properties usually do not meet the requirements necessary to perform the floor. The soil stabilization for the implementation of urban pavement bases and sub-bases is an increasingly important aspect in the current situation, because always there is the concern with the environment, and there is now the clear awareness that every effort should be made to minimize the effects caused by the exploitation of deposits and deposition of material. In this sense this work presents the effects of adding different proportions of lime to stabilize a sedimentary soil sample from the urban area of the city of Curitiba. It selected a sample quantity of soil in the region to study the stabilization insertion of hydrated lime type (CHIII) powder. The two variables in the study are related to the content of lime mixed with the soil at 0% percentages of 3%, 6%, 8% and 16%, and cure times at which these mixtures were subjected to (0, 7, 14, 28 and 56 days). The tested mixtures were prepared from dosages defined by two methods: one checking the chemical behavior of the samples by means of changes in pH values, and the second analyzing the mechanical behavior through the RCS values. It has been found that the chemical stability analyzed by addition of lime, provided an average increase of RCS in most soil samples studied, because of some physical and chemical characteristics thereof. For mixtures with 6%, 8% and 16% of lime after 28 days of curing, the average RCS was 0,57 MPa, 1,06 MPa and 2,37 MPa, respectively, for the normal proctor, and as for intermediate proctor, in the same curing time and on the same percentages RCS results were 0,54 MPa, 1,04 MPa and 2,71 MPa, respectively. In global terms, the soil-lime mixtures studied showed acceptable behavior by law to use as layers of sub-base. However, only the mixture with 16% of lime, at 28 days, is recommended for use on floors bases. Even so, the mixtures studied constitute a good alternative economic and socio-environmental.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, the decision analysis in production processes involves a level of detail, in which the problem is subdivided to analyze it in terms of different and conflicting points of view. The multi-criteria analysis has been an important tool that helps assertive decisions related to the production process. This process of analysis has been incorporated into various areas of production engineering, by applying multi-criteria methods in solving the problems of the productive sector. This research presents a statistical study on the use of multi-criteria methods in the areas of Production Engineering, where 935 papers were filtered from 20.663 publications in scientific journals, considering a level of the publication quality based on the impact factor published by the JCR between 2010 and 2015. In this work, the descriptive statistics is used to represent some information and statistical analysis on the volume of applications methods. Relevant results were found with respect to the "amount of advanced methods that are being applied and in which areas related to Production Engineering." This information may provide support to researchers when preparing a multi-criteria application, whereupon it will be possible to check in which issues and how often the other authors have used multi-criteria methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portland cement being very common construction material has in its composition the natural gypsum. To decrease the costs of manufacturing, the cement industry is substituting the gypsum in its composition by small quantities of phosphogypsum, which is the residue generated by the production of fertilizers and consists essentially of calcium dihydrate and some impurities, such as fluoride, metals in general, and radionuclides. Currently, tons of phosphogypsum are stored in the open air near the fertilizer industries, causing contamination of the environment. The 226 Ra present in these materials, when undergoes radioactive decay, produces the 222Rn gas. This radioactive gas, when inhaled together with its decay products deposited in the lungs, produces the exposure to radiation and can be a potential cause of lung cancer. Thus, the objective of this study was to measure the concentration levels of 222Rn from cylindrical samples of Portland cement, gypsum and phosphogypsum mortar from the state of Paraná, as well as characterizer the material and estimate the radon concentration in an environment of hypothetical dwelling with walls covered by such materials. Experimental setup of 222Rn activity measurements was based on AlphaGUARD detector (Saphymo GmbH). The qualitative and quantitative analysis was performed by gamma spectrometry and EDXRF with Au and Ag targets tubes (AMPTEK), and Mo target (ARTAX) and mechanical testing with x- ray equipment (Gilardoni) and the mechanical press (EMIC). Obtained average values of radon activity from studied materials in the air of containers were of 854 ± 23 Bq/m3, 60,0 ± 7,2 Bq/m3 e 52,9 ± 5,4 Bq/m3 for Portland cement, gypsum and phosphogypsum mortar, respectively. These results extrapolated into the volume of hypothetical dwelling of 36 m3 with the walls covered by such materials were of 3366 ± 91 Bq/m3, 237 ± 28 Bq/m3 e 208 ± 21 Bq/m3for Portland cement, gypsum and phosphogypsum mortar, respectively. Considering the limit of 300 Bq/m3 established by the ICRP, it could be concluded that the use of Portland cement plaster in dwellings is not secure and requires some specific mitigation procedure. Using the results of gamma spectrometry there were calculated the values of radium equivalent activity concentrations (Raeq) for Portland cement, gypsum and phosphogypsum mortar, which were obtained equal to 78,2 ± 0,9 Bq/kg; 58,2 ± 0,9 Bq/kg e 68,2 ± 0,9 Bq/kg, respectively. All values of radium equivalent activity concentrations for studied samples are below the maximum level of 370 Bq/kg. The qualitative and quantitative analysis of EDXRF spectra obtained with studied mortar samples allowed to evaluate quantitate and the elements that constitute the material such as Ca, S, Fe, and others.