3 resultados para CINÉTICA

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strong selection pressure exerted by intensive use of glyphosate in cultivated areas has selected populations of the Rubiaceae weed species Borreria latifolia (Aubl.) K.Shum. (broadleaf buttonweed), Galianthe chodatiana (Standl.) E.L. Cabral (galiante) and Richardia brasiliensis Gomes (Brazilian pusley) with differential sensitivity to this herbicide in the South region of Brazil. The control of these weeds with herbicides is troublesome and signals the need to incorporate management practices of ruderal flora and crops, more sustainable and that results in more efficient control for long-term. Therefore, it is very important to expand the information about their biology and management. This study aimed: (a) select efficient methods to overcome dormancy of B. latifolia and G. chodatiana and determine how they influence the kinetics of seeds germination; (b) analyze the effects of temperature, irradiance, pH, aluminum and salinity on seed germination and initial growth of the B. latifolia, G. chodatiana e R. brasiliensis seedlings; (c) evaluate tolerance to glyphosate levels in biotypes of B. latifolia, G. chodatiana e R. brasiliensis through dose-response curves and compare two methods to evaluate herbicidal control; (d) and evaluated the effectiveness of alternative herbicides in pre-emergence and in early and late post-emergence of the three species. The treatment with KNO3 2%/3h + gibberellic acid 400 ppm resulted in higher percentage of G. chodatiana seed germination. This treatment and also the dry heat (60°C/30 min) + KNO3 2%/3h were more effective in overcoming dormancy of B. latifolia. G. chodatiana and R. brasiliensis tolerate lower temperatures during the germination process, while B. latifolia tolerate higher temperatures. B. latifolia and R. brasiliensis are positive photoblastic while G. chodatiana is indifferent to the photoperiod. B. latifolia shows higher germination and early development in pH 3, while G. chodatiana and R. brasiliensis prefer pH range between 5 and 7. B. latifolia and G. chodatiana were more tolerant to the aluminum during the germination process than R. brasiliensis. Low salt levels were sufficient to reduce the seed germination of the three species. Some biotypes of B. latifolia and R. brasiliensis showed medium-high glyphosate tolerance, not being controlled by higher doses than recommended. The G. chodatiana specie was not controlled with the highest dose used, showing a high glyphosate tolerance. The sulfentrazone, s-metolachlor and saflufenacil herbicides sprayed in pre-emergence showed high efficacy both on B. latifolia and R. brasiliensis, while chlorimuron-ethyl and diclosulan were effective only on R. brasiliensis. In early post-emergence the fomesafen, lactofem and flumioxazin herbicides efficiently controlled plants of all species, while bentazon showed high efficacy only on B. latifolia. Noteworthy the susceptibility of the G. chodatiana specie for applications in early post-emergence, because the control effectiveness and the number of effective herbicides are reduced with increasing the plant age. Many treatments with tank mix or sequencial applications with glyphosate, were effective in controlling B. latifolia and R. brasiliensis plants in advanced stage of development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some quality defects can cause changes in attributes of the meat, among these we can detach the PSE meat (Pale, Soft and Exudative). The PSE meat is pale, flaccid and exudative and result from sudden pH decrease while the carcass is still under high temperature. The identification of PSE meat has been done by measuring pH and L* (Lightness). However, studies suggest that a more precise evaluation of the kinetics of pH and temperature decrease has to be conducted to better understand the etiology of PSE meat in poultry. The aim of this study was to obtain the glycolytic curve for normal and PSE meat of chicken, through the pH, L* and CRA (water holding capacity) analysis. This experiment was conducted with carcasses obtained from a commercial slaughterhouse (n = 35) of Cobb lineage, 50 days old, from the same batch of creation and with the same pre-slaughter fasting time (10h). Samples of breast fillets were obtained from carcasses randomly collected immediately at the output of pre-cooling chiller, and the analysis of pH, temperature and L * were conducted in the same in times 1h35, 2h35, 3h35, 5h35, 8h35, 11h35, 14h35, 17h35, 20h35, 23h35 and 25h35 post mortem. The CRA analyzes were performed at the time of 25h35 post mortem. The pH measurements indicated that only from the 04 time (8h35 post mortem) was possible to verify an indicative of stabilization, being that PSE meat pH was 5,69±0,07, and normal meat was 5,93±0,09. The final pH (25h35 post mortem) was 5,98±0,06 and L* 57,30± 2,39 for normal meat, while for PSE meat the result was 5,72±0,06 and L* 59,44±1,51. To CRA, the average of the samples (67,19±3.13 and 64,45± 2.66) showed a difference between the normal chicken fillets and PSE respectively. The data found in this study are consistent with those reported by own research group in another slaughterhouse and contradicts similar works, but made at room temperature, indicating that for chickens under commercial conditions the resolution of rigor mortis occurs after 8h35 post mortem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environmental pollution caused by industries has increased the concentration of pollutants in the environment, especially in water. Among the most diverse contaminants, there is the metals, who may or may not to be heavy/toxic, causing effluent of difficult treatment when in low concentrations. The search for alternative measures of wastewater effluent treatment has led to studies using phytoremediation technique through the various matrices (plant, fungi, bacteria) as means of polishing treatment to remove contaminants by means of biosorption/bioaccumulation. In order to use the phytoremediation technique for removing metals of the environmental, it have been performed bioassay with the macrophyte Pistia stratiotes. The bioassays were realized with healthy plants of P. stratiotes acclimatized in a greenhouse, at room temperature and lighting conditions during 28 days of cultivate. The cultivations were performed in glass vessels containing 1 L of the hydroponic solution with chromium (VI) in the potassium dichromate form with concentration range 0.10 to 4.90 mg L-1. The experiments were performed by Outlining Central Composite Rotational (OCCR), where the kinetics of bioaccumulation and chlorophyll a fluorescence were monitored in plants of P. stratiotes during cultivation. The collections of the samples and cultive solution were performed according to the OCCR. The chromium levels were measured in samples of P. stratiotes and the remaining solutions by the methodology of atomic absorption spectrometry by flame. The tolerance of P. stratiotes in relation to exposure to chromium (VI) was analyzed by parameters of physiological activity by means of chlorophyll a fluorescence, using the portable fluorometer PAM (Pulse Amplitude Modulation). The development of P. stratiots and their biomass were related to the time factor, while bioaccumulation capacities were strongly influenced by factors of time and chromium concentration (VI). The chlorophyll fluorescence parameters were affected by chromium and the exposure time at the bioassays. It was obtained an higher metal removal from the root in relation to the sheet, reaching a high rate of metal removal in solution. The experimental data removal kinetics were represented by kinetic models Irreversibly Langmuir, Reversible Langmuir, Pseudo-first Order and Pseudo-second Order, and the best fit for the culture solution was the Reversible Langmuir model with R² 0.993 and for the plant the best model was Pseudo-second order with R² 0.760.