3 resultados para Broca da semente
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
The use of inputs containing phosphites have been presenting results in many studies, taking on importance to the control of diseases in some cultures and demonstrating the resistance induction in seedlings, with ability to activate defense mechanisms, conferring protection to plants against microorganisms. The soybean crop is recognized for its importance in providing grains and derivatives for human consumption, animal, production of biofuels, pharmaceuticals, among others. Positive results obtained through studies based on resistance inducers in some cultures arouse the interest for further study. The objective of this study was to evaluate the effect of potassium phosphites on the resistance induction and treatment of soybean seeds. Therefore were conducted four laboratory studies at the Federal Technological University of Paraná, Campus of Dois Vizinhos. In the first study it was evaluated the quality attributes of the seeds and the resistance induction as seed treatment. Then it was verified that phosphites have action upon the seedlings metabolism in due to seed treatment, having the phosphite Reforce® contributed to seed quality attributes and phosphites FitofosK® and Fitofos K Plus® induced the resistance increasing the activity of β-1,3-glucanase. In the second study it was evaluated the the resistance induction in soybean cotyledons, in which the phosphites demonstrated induction potential of phytoalexin gliceolin. In the third study It was evaluated the soybean seed health treated with potassium phosphites.. it was observed that the phosphites reduced the incidence of many fungi on seeds, especially of storage fungi like Aspergillus sp. and Fusarium semitectum. In the fourth study it was evaluated the in vitro effect of potassium phosphites on pathogenic fungi of the culture. And it was found direct action of phosphites on the mycelial growth of Fusarium semitectum, Pythium sp. and Sclerotinia sclerotiorum. Based on these results, we concluded that potassium phosphites have potential in seeds treatment, as resistance inducer and on in vitro control of phytopathogens.
Resumo:
The seed size used for seeding has caused doubts among soybean producers. The study aimed to determine whether there may be differences between seed size with respect to depth of fertilizer deposition. The field experiment was conducted at the Experimental Area UTFPR Campus Pato Branco, using a precision seeder for direct seeding. The design was a randomized blocks, with five repetitions. The treatments were composed by the combination of two seed sizes (large seed with 6,5 mm and 5,5 mm with small seed) and two fertilizer deposition depths in relation to the seed (fertilizer near the seed with about 3 cm away and fertilizer distant from the seeds with about 10 cm). Data were subjected to analysis of variance. When the test value F was significant at 5% probability was applied to the Duncan test for comparison of means. The shallower depth of fertilizer deposition provided larger number of pods per plant and increased number of grains per plant. Already the largest depth of fertilizer deposition provided greater plant height at 30 days after sowing and R2 stage, greater ground area mobilized, higher plant population in all periods, greater depth of deposition of seeds and a higher rate of emergency speed.
Resumo:
Drilling fluids present a thixotropic behavior and they usually gel when at rest. The sol-gel transition is fundamental to prevent the deposit of rock fragments, generated by drilling the well, over the drill bit during eventual stops. Under those conditions, high pressures are then required in order to break-up the gel when circulation is resumed. Moreover, very high pressures can damage the rock formation at the bottom of the well. Thus, a better understanding of thixotropy and the behavior of thixotropic materials becomes increasingly important for process control. The mechanisms that control thixotropy are not yet well defined and modeling is still a challenge. The objective of this work is to develop a mathematical model to study the pressure transmission in drilling fluids. This work presents a review of thixotropy and of different mathematical models found in the literature that are used to predict such characteristic. It also shows a review of transient flows of compressible fluids. The problem is modeled as the flow between the drillpipe and the annular region (space between the wall and the external part of the drillpipe). The equations that describe the problem (mass conservation, momentum balance, constitutive and state) are then discretized and numerically solved by using a computational algorithm in Fortran. The model is validated with experimental and numerical data obtained from the literature. Comparisons between experimental data obtained from Petrobras and calculated by three viscoplastic and one pseudoplastic models are conducted. The viscoplastic fluids, due to the yield stress, do not fully transmit the pressure to the outlet of the annular space. Sensibility analyses are then conducted in order to evaluate the thixotropic effect in pressure transmission.