3 resultados para Blood Pump, Ventricular Assist device, LVAD, BVAD, Computational fluid dynamics, artificial heart
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
Electrical Submersible Pump (ESP) is used as an artificial lift technique. However, pumping viscous oil is generally associated with low Reynolds number flows. This condition leads to a performance degradation respect to the performance expected from the regular operation with water that most of the centrifugal pumps are originally designed for. These issues are considered in this investigation through a numerical study of the flow in two different multistage, semi-axial type ESPs. This investigation is carried out numerically using a Computational Fluid Dynamics (CFD) package, where the transient RANS equations are solved numerically. The turbulence is modeled using the SST model. Head curves for several operating conditions are compared with manufacturer’s curves and experimental data for a three-stage ESP, showing good agreement for a wide range of fluid viscosities and rotational speeds. Dimensionless numbers (n, n, n e Re) are used to investigate performance degradation of the ESPs. In addition, flow phenomena through the impellers of the ESPs are investigated using flow field from numerical results. Results show that performance degradation is directly related to rotational Reynolds number, Re. In addition, it was verified that performance degradation occurs for constant normalized specific speedn, which shows that performance degradation occurs similarly for different centrifugal pumps. Moreover, experimental data and numerical results agreed with a correlation from literature between head and flow correction factors proposed by Stepanoff (1967). A definition of modified Reynolds number was proposed and relates the head correction factor to viscosity. A correlation between head correction factor and the modified Reynolds number was proposed, which agreed well with numerical and experimental data. Then, a method to predict performance degradation based on the previous correlations was proposed. This method was compared with others from literature. In general, results and conclusions from this work can also be useful to bring more information about the flow of highly viscous fluids in pumps, especially in semi-axial, multistage ESPs.
Resumo:
Centrifugal pumps are vastly used in many industrial applications. Knowledge of how these components behave in several circumstances is crucial for the development of more efficient and, therefore, less expensive pumping installations. The combination of multiple impellers, vaned diffusers and a volute might introduce several complex flow characteristics that largely deviate from regular inviscid pump flow theory. Computational Fluid Dynamics can be very helpful to extract information about which physical phenomena are involved in such flows. In this sense, this work performs a numerical study of the flow in a two-stage centrifugal pump (Imbil ITAP 65-330/2) with a vaned diffuser and a volute. The flow in the pump is modeled using the software Ansys CFX, by means of a multi-block, transient rotor-stator technique, with structured grids for all pump parts. The simulations were performed using water and a mixture of water and glycerin as work fluids. Several viscosities were considered, in a range between 87 and 720 cP. Comparisons between experimental data obtained by Amaral (2007) and numerical head curves showed a good agreement, with an average deviation of 6.8% for water. The behavior of velocity, pressure and turbulence kinetic energy fields was evaluated for several operational conditions. In general, the results obtained by this work achieved the proposed goals and are a significant contribution to the understanding of the flow studied.
Simulação numérica da convecção mista em cavidade preenchida com meio poroso heterogêneo e homogêneo
Resumo:
In this work is presented mixed convection heat transfer inside a lid-driven cavity heated from below and filled with heterogeneous and homogeneous porous medium. In the heterogeneous approach, the solid domain is represented by heat conductive equally spaced blocks; the fluid phase surrounds the blocks being limited by the cavity walls. The homogeneous or pore-continuum approach is characterized by the cavity porosity and permeability. Generalized mass, momentum and energy conservation equations are obtained in dimensionless form to represent both the continuum and the pore-continuum models. The numerical solution is obtained via the finite volume method. QUICK interpolation scheme is set for numerical treatment of the advection terms and SIMPLE algorithm is applied for pressure-velocity coupling. Aiming the laminar regime, the flow parameters are kept in the range of 102≤Re≤103 and 103≤Ra≤106 for both the heterogeneous and homogeneous approaches. In the tested configurations for the continuous model, 9, 16, 36, and 64 blocks are considered for each combination of Re and Ra being the microscopic porosity set as constant φ=0,64 . For the pore-continuum model the Darcy number (Da) is set according to the number of blocks in the heterogeneous cavity and the φ. Numerical results of the comparative study between the microscopic and macroscopic approaches are presented. As a result, average Nusselt number equations for the continuum and the pore continuum models as a function of Ra and Re are obtained.