2 resultados para Amido fosfatado
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
Starch has properties that make it one of the most studied biopolymers today. It is biodegradable, biocompatible, stable and non-toxic. This work has synthesis of starch and tapioca microparticles, through chemical modification by crosslinking with sodium tripolyphosphate agent in concentrations 7.5 and 15% (m / m). The amylose content was measured for starch and commercial cassava starch at 21.8% and 28.6%, respectively. According to the solubility index, processing in basic medium does not change the solubility of the material, but the addition of crosslinking agent increases this index, which changed from 12.8% for the control unprocessed, to 22.4% for the A5R15 sample. Soluble starch-based materials had a significant increase in the crosslinking density by increasing the concentration of crosslinker, from 1.4 in A5R7,5 sample, to 1.9 in A5R15. The cassava starch-based materials exhibited an opposite behavior: to increase the concentration of crosslinker crosslinking density decreased significantly in F5R7.5 from 2.9, to 1.9 in F5R15 sample. The point of zero charge (PZC) shows that below pH 4 the surface is positively charged. The surface area data is between 3,04 and 1,15 m2.g-1. The pore volume between 2.94 and 1.33 cm3.g-1 and pore size around 1.5 nm. The SEM indicates uneven distribution of microparticles, which are smooth, with no ridges. The maximum adsorption capacity of the materials were tested at pH 7.7 and for A5R15 and CA sample, at pH 2, 5, 6 and 9. It is noted that the processing in basic medium reduces the adsorption capacity of CA and CF in respect fo A and F. The adsorption in A5R15 sample has great dependency on the pH, reaching a value of 587 μg.g-1 in pH 7.7. The samples A5R15 and F5R7,5 adsorbed similar amounts, according to the statistical analysis, and significantly higher than their respective controls and showed lower desorption, indicating that the modification process was effective to control the release of methylene blue. The infrared spectra not show the characteristic bands of the phosphate bonds to the material formed, however, developments in hydroxyl characteristic band suggest modification in the way this group was linked after the reaction. After adsorption, the infrared spectra show different format in the band of hydroxyl. PCA analysis shows that the greatest changes observed in the IR spectra are observed in the region of 3500 cm-1. Thermal analysis showed three thermal events related to dehydration and material degradation. It is observed that the processing increases the temperature to the first mass loss, fixed at 12%, but not observed increased stability due to the presence of crosslinker or process.
Resumo:
The use of biopolymers that help to fix pesticides efficiently and degrade easily without harming the environment, and still improve the physiological performance of field soybean seed may bring contributions to the soybean yield. This study aimed to evaluate the effect of cassava starch polymers (AM), sodium alginate (ALG) and polyvinyl alcohol (PVOH), in the concentrations 2, 4 and 6 g / 100 ml of solution, in the physiological attributes of seeds soy, seed speed soaking and performance of soybean seeds after three months of storage. The soybean variety used was the NK 7059 RR. The experimental design used for the three studies was a factorial with 48 experimental units: 3 polymers (AM, ALG and PVOH), 4 different concentrations (0%, 2%, 4% and 6%), with four replications, in a completely randomized design. It was observed the level of significance of the factors and their interactions, applying the test F. The polymers were evaluated by the Tukey test at 5% probability, and the concentrations were evaluated by polynomial regression. The witness obtained better results for most variables studied. Among the polymers, the best coating was observed PVOH because it was the less viscous polymer and visually not served as a substrate for microorganisms. However, also, satisfactory results were obtained for the AM and ALG polymers at a concentration of 2%. There was not interference of the polymers studied with regard to reduction of imbibition rate of soybean seeds. The hydrophilicity of polymers, mainly the AM and ALG accelerated soaking seeds harming germination at concentrations 4% and 6%. In general, the higher the concentration of polymers tended to worse results.