2 resultados para Adaptability and stability
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
The instability of environment between years in climates of subtropical regions difficult to obtain peach trees genotypes with wide adaptation and stable production, contributing to poor crop. The climate instability can affect development stages as flower bud and vegetative bud formation. The factors understanding that control the bud formation, presents elementary importance for effective solutions search to these problems. The objective this work is verify the temperature effect, relative humidity and rainfall on bud density and length shoot (Brindilas) and identify genotypes with more adaptability and stability for this character. Was used 12 peach trees genotypes growing in experimental orchard in the Technology Federal of Paraná State University, Campus Pato Branco with Cfa Köppen climate according to the classification. Data of rainfall, hourly temperature were collected by the weather station of Simepar. They were used three plants for genotype (rehearsal), identify five shoots per tree, in May of each year. Were carried analyzes of length shoot CR (cm), count number of flower bud (GF) and vegetative bud (GV). Also calculated the relationship between GF/GV and flower bud density and vegetative bud density. Evaluations were performer annual 2007-2014. With these data adaptability and stability analyzes were performed using Biplot methodology and correlations analyzes (Pearson) with climates variables. They used the weather data to calculate the sums of hours with temperatures below 20 °C, temperatures between 20-25 °C, temperature between 25-30 °C and temperature above 30 °C, considering the period of August 1fst of the previous period to February 28 of the following year. Pearson correlation coefficients were used for path analysis, GF and DGF as basic variables. For CR, GV and GF the highest average occurred in 2009/10 period. The genotypes ‘BRS Kampai’ and ‘BRS Libra’ highest CR. They are considered stable and adapted as the CR genotypes ‘Casc. 967’ and ‘BRS Kampai’. There was negative correlation between CR and GV for Σh <20 ° C, Σh> 30 °C and Σh with URA <50% and positive correlation between these variables and Σh 25-30 °C and Σh with URA> 70%. The evaluation of GV ‘Cons. 681’ and ‘Casc. 1055’ can be considered adapted and stable. The lowest average was presented by the genotype ‘Sta. Áurea’ though the genotype is also stable. In GF evaluation genotypes are considered adapted ‘BRS Bonão’, ‘Casc. 1055’, ‘Cons. 681’ with adaptability to all evaluated period. In path analysis was direct effect Σh 25-30 °C on flower bud density. In evaluating DGV and DGF and the variations are due to genetic effect. The most adapted and stable genotypes for DGV were ‘T. Beauty’, ‘T. Snow’, ‘Casc. 1055’ and ‘Cons. 681’. CR and GV variables are strongly affected by environment. GF is strongly affected by genetic conditions and moderately affected by environment. DGV and DGF are affected basically by genetic conditions.
Resumo:
The jabuticaba tree has great potential for commercial exploitation. However, its is very little used. This fact shows to be necessary to do studies that allow understand their growth behavior during the year and, if it is tolerant to frost. So that it can establish management strategies for cultivation in orchard. Other point, it is the fact that the long juvenile period of jabuticaba tree limits its use. However, many species have compound leaves that characterize them as functional compounds, what to posible its commercialization. If the leaf jabuticaba tree also present such nutraceutical compounds, this it may become an alternative source of income until the plant to start its yield. The objectives of this study were to analyze the growth behavior, the occurrence of flowering and fruit set, and the frost tolerance of jabuticaba tree genotypes present in the collection of Native Fruit from UTFPR – Câmpus Dois Vizinhos. Associated growth analysis was made evaluation of genetic divergence among these genotypes, checking the adaptive behavior in orchard condition through adaptability and stability analysis based on growth measures to stem and shoots; estimating the repeatability coefficient of stem length of characters and primary shoots, and determine the minimum number of evaluations able to provide certain levels of prediction of the actual value of these individuals. Also determined the genetic divergence among genotypes as the leaves of antioxidant activity by DPPH and ABTS methods, as well as the determination of total phenolics. The genotypes studied were put in orchard in 2009. The growth response in the three cycles was variable between months and genotypes, what it can be difficult the practices in the orchard if it do not use clones. Genotypes 'Silvestre' and 'Açú' showed greater width and leaf area compared with other genotypes, but such behavior is not favored for increased stem growth and primary shoots. Foliar increments in most genotypes occurred in the fall for leaf width, spring for length and leaf area, despite the winter also arise with genotypes, it showed superiority to width and leaf area. Most jabuticabas trees were juvenile stage with only four starting at its transition between the vegetative and reproductive phase. Tolerance to frost was observed in 26 families jabuticabeira of the 29 present in the collection. The diversity among the genotypes was to change with the time, already in each cycle, there was the formation of different groups by the methods used. The methods tested for adaptability and stability of the jabuticaba tree growth behavior did not show the same pattern in the results. The number of measurements needed to predict the actual value of genotypes based on variables evaluated was approximately one to the stem length and four for the shoots based on the method of main components of covariance with 90% probability. he antioxidant activity of the extracts of leaves of jabuticaba tree genotypes were demonstrated high when compared to other species by methods DPPH and ABTS, as well as the amount of phenolic compounds. Genotype 'Silvestre' and 'IAPAR' showed the highest antioxidant activity in the leaves. However, the genetic divergence among genotypes jabuticaba tree from collection of Native Fruit trees at UTFPR - Câmpus Dois Vizinhos for antioxidant activity leaves showed that they have great homogeneity among them and the low divergence. However, it is recommended as possible hybridization the use as parents, José 4, IAPAR 4 and Fernando Xavier genotypes.