1 resultado para índice de estabilidade de agregados

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The replacement of native vegetation by other land uses is one of the main degrading ecosystem agents, being the most important component of terrestrial environments, natural or with different levels of human disturbance, besides being the main substrate used by plants to obtain conditions soil for its development. In this context, there is the need to adopt the use and sustainable management of land systems. The study aimed to evaluate what is forest restoration system more efficient degraded areas, based on the potential recovery of physical, chemical, carbon and biological activity in the soil. The work was conducted in a forest restoration area UTFPR- Campus two neighbors, whose experiment was established in October 2010. The experimental design is completely randomized, with four replications and experimental plot of 40 m wide by 54 m long ( 2160 m2) were collected and six sampling points per plot. The soil is classified as a Typic. The models evaluated are: 1 - natural or passive regeneration; 2 - Nucleation; 3 - Planting trees in the total area under lines fill and diversity (total planting); 4 - Reference area (forest). The collection of soil samples in layers of 0.0-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.40 m was carried out in October 2013 and evaluated physical attributes of texture, bulk density, total porosity, microporosity and soil macroporosity and stability of water in households, chemical properties, and total organic carbon (TOC) and physical particle size fractionation and soil biological activity. To find the best forest restoration model, we designed a Restoration Quality Weighted Index for each variable analyzed. Natural regeneration and total plantation showed generally better soil aggregation over 0.10 m and nucleation volume of similar porosity the forest for these layers. There were no differences between the models below 0.10 m for the variables aggregation and soil porosity. The nucleation template had the lowest bulk density, but being greater than the density in the layer forest 0.05-0.10 m, however, was similar to below 0.10 m above the ground. The models had chemical properties similar to or greater than the forest. The forest had the highest stock of COT and carbon associated with minerals (CAM), but natural regeneration was similar to the particulate organic carbon (POC) in the superficial layers of the soil (0-0.10 m), below 0, 10 m, the forest showed higher stock of COT and COP on the ground. The highest peak of C-CO2 emissions occurred in the 28-35 day range where the total plantation was similar to forest. After four years of experiments, it was found that the effect of restoration methods on physical attributes and soil carbon restricted to 0.10 m deep.