2 resultados para mean field independent component analysis
em Repositório Institucional da Universidade Federal do Rio Grande do Norte
Resumo:
LOPES-DOS-SANTOS, V. , CONDE-OCAZIONEZ, S. ; NICOLELIS, M. A. L. , RIBEIRO, S. T. , TORT, A. B. L. . Neuronal assembly detection and cell membership specification by principal component analysis. Plos One, v. 6, p. e20996, 2011.
Resumo:
Recent progress in the technology for single unit recordings has given the neuroscientific community theopportunity to record the spiking activity of large neuronal populations. At the same pace, statistical andmathematical tools were developed to deal with high-dimensional datasets typical of such recordings.A major line of research investigates the functional role of subsets of neurons with significant co-firingbehavior: the Hebbian cell assemblies. Here we review three linear methods for the detection of cellassemblies in large neuronal populations that rely on principal and independent component analysis.Based on their performance in spike train simulations, we propose a modified framework that incorpo-rates multiple features of these previous methods. We apply the new framework to actual single unitrecordings and show the existence of cell assemblies in the rat hippocampus, which typically oscillate attheta frequencies and couple to different phases of the underlying field rhythm