1 resultado para high-dimensional
em Repositório Institucional da Universidade Federal do Rio Grande do Norte
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (2)
- Aberdeen University (3)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (34)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (11)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (32)
- Boston University Digital Common (9)
- Brock University, Canada (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (15)
- Cambridge University Engineering Department Publications Database (70)
- CentAUR: Central Archive University of Reading - UK (46)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (149)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (14)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (3)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (23)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (106)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (13)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (69)
- Queensland University of Technology - ePrints Archive (75)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (42)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (18)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (12)
- University of Michigan (2)
- University of Queensland eSpace - Australia (13)
- University of Washington (6)
- WestminsterResearch - UK (2)
Resumo:
Recent progress in the technology for single unit recordings has given the neuroscientific community theopportunity to record the spiking activity of large neuronal populations. At the same pace, statistical andmathematical tools were developed to deal with high-dimensional datasets typical of such recordings.A major line of research investigates the functional role of subsets of neurons with significant co-firingbehavior: the Hebbian cell assemblies. Here we review three linear methods for the detection of cellassemblies in large neuronal populations that rely on principal and independent component analysis.Based on their performance in spike train simulations, we propose a modified framework that incorpo-rates multiple features of these previous methods. We apply the new framework to actual single unitrecordings and show the existence of cell assemblies in the rat hippocampus, which typically oscillate attheta frequencies and couple to different phases of the underlying field rhythm