3 resultados para Speci
em Repositório Institucional da Universidade Federal do Rio Grande do Norte
Resumo:
SILVA, Fatima C. B. L. et al. Digestive enzymes during development of Ceratitis capitata (Diptera:Tephritidae) and effects of SBTI on its digestive serine proteinase targets. Insect Biochemistry and Molecular Biology, v. 36, p. 561-569, 2006.ISSN: 0965-1748.DOI: 10.1016/j.ibmb.2006.04.004.
Resumo:
Three populations of neurons expressing the vesicular glutamate transporter 2 (Vglut2) were recently described in the A10 area of the mouse midbrain, of which two populations were shown to express the gene encoding, the rate-limiting enzyme for catecholamine synthesis, tyrosine hydroxylase (TH).One of these populations (‘‘TH– Vglut2 Class1’’) also expressed the dopamine transporter (DAT) gene while one did not ("TH–Vglut2 Class2"), and the remaining population did not express TH at all ("TH-Vglut2-only"). TH is known to be expressed by a promoter which shows two phases of activation, a transient one early during embryonal development, and a later one which gives rise to stable endogenous expression of the TH gene. The transient phase is, however, not specific to catecholaminergic neurons, a feature taken to advantage here as it enabled Vglut2 gene targeting within all three A10 populations expressing this gene, thus creating a new conditional knockout. These knockout mice showed impairment in spatial memory function. Electrophysiological analyses revealed a profound alteration of oscillatory activity in the CA3 region of the hippocampus. In addition to identifying a novel role for Vglut2 in hippocampus function, this study points to the need for improved genetic tools for targeting of the diversity of subpopulations of the A10 area
Resumo:
Sleep helps the consolidation of declarative memories in the laboratory, but the pro-mnemonic effect of daytime naps in schools is yet to be fully characterized. While a few studies indicate that sleep can indeed benefit school learning, it remains unclear how best to use it. Here we set out to evaluate the influence of daytime naps on the duration of declarative memories learned in school by students of 10–15 years old. A total of 584 students from 6th grade were investigated. Students within a regular classroom were exposed to a 15-min lecture on new declarative contents, absent from the standard curriculum for this age group. The students were then randomly sorted into nap and non-nap groups. Students in the nap group were conducted to a quiet room with mats, received sleep masks and were invited to sleep. At the same time, students in the non-nap group attended regular school classes given by their usual teacher (Experiment I), or English classes given by another experimenter (Experiment II). These 2 versions of the study differed in a number of ways. In Experiment I (n = 371), students were pre-tested on lecture-related contents before the lecture, were invited to nap for up to 2 h, and after 1, 2, or 5 days received surprise tests with similar content but different wording and question order. In Experiment II (n = 213), students were invited to nap for up to 50 min (duration of a regular class); surprise tests were applied immediately after the lecture, and repeated after 5, 30, or 110 days. Experiment I showed a significant ∼10% gain in test scores for both nap and non-nap groups 1 day after learning, in comparison with pre-test scores. This gain was sustained in the nap group after 2 and 5 days, but in the non-nap group it decayed completely after 5 days. In Experiment II, the nap group showed significantly higher scores than the non-nap group at all times tested, thus precluding specific conclusions. The results suggest that sleep can be used to enhance the duration of memory contents learned in school.