2 resultados para Solar thermal energy.
em Repositório Institucional da Universidade Federal do Rio Grande do Norte
Resumo:
This thesis aims to describe and demonstrate the developed concept to facilitate the use of thermal simulation tools during the building design process. Despite the impact of architectural elements on the performance of buildings, some influential decisions are frequently based solely on qualitative information. Even though such design support is adequate for most decisions, the designer will eventually have doubts concerning the performance of some design decisions. These situations will require some kind of additional knowledge to be properly approached. The concept of designerly ways of simulating focuses on the formulation and solution of design dilemmas, which are doubts about the design that cannot be fully understood nor solved without using quantitative information. The concept intends to combine the power of analysis from computer simulation tools with the capacity of synthesis from architects. Three types of simulation tools are considered: solar analysis, thermal/energy simulation and CFD. Design dilemmas are formulated and framed according to the architect s reflection process about performance aspects. Throughout the thesis, the problem is investigated in three fields: professional, technical and theoretical fields. This approach on distinct parts of the problem aimed to i) characterize different professional categories with regards to their design practice and use of tools, ii) investigate preceding researchers on the use of simulation tools and iii) draw analogies between the proposed concept, and some concepts developed or described in previous works about design theory. The proposed concept was tested in eight design dilemmas extracted from three case studies in the Netherlands. The three investigated processes are houses designed by Dutch architectural firms. Relevant information and criteria from each case study were obtained through interviews and conversations with the involved architects. The practical application, despite its success in the research context, allowed the identification of some applicability limitations of the concept, concerning the architects need to have technical knowledge and the actual evolution stage of simulation tools
Resumo:
The goal of the research was to investigate the energy performance of residential vertical buildings envelope in the hot and humid climate of Natal, capital of Rio Grande do Norte, based in the Technical Regulation of Quality for Energy Efficiency Level in Residential Buildings (RTQ -R), launched in 2010. The study pretends to contribute to the development of design strategies appropriate to the specific local climate and the increasing of energy efficiency level of the envelope. The methodological procedures included the survey in 22 (twenty two) residential buildings, the formulation of representative prototypes based on typological and constructives characters researched and the classification of the level of energy efficiency in the envelopment of these prototypes, using as a tool the prescriptive method of the RTQ-R and the parametric analyzes from assigning different values of the following variables: shape of the pavement type; distribution of housing compartments; orientation of the building; area and shading of openings; thermal transmittance, and solar absorptance of opaque materials of the frontage in order to evaluate the influence of these on the envelopment performance. The main results accomplished with this work includes the qualification of vertical residential buildings in Natal/RN; the verification of the adequacy of these buildings to local climate based from the diagnosis of the thermal energy of the envelopment performance, the identification of variables with more significant influence on the prescriptive methodology of RTQ-R and design solutions more favorable to obtain higher levels energy efficiency by this method. Finally, it was verified, that some of these solutions proved contradictory in relation to the recommendations contained in the theoretical approaches regarding environmental comfort in hot and humid weather, which indicates the need for improvement of the prescriptive method RTQ-R and further research on efficient design solutions