2 resultados para Satelites artificiais – Rotação
em Repositório Institucional da Universidade Federal do Rio Grande do Norte
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model
Resumo:
Artificial lakes must differ from natural lakes in important structural and functional aspects that need to be understood so that these ecosystems can be properly managed. The aim of this work was to test the hypothesis that the artificial lakes (impoundments) in the semi-arid region of the Rio Grande do Norte State are more eutrophic and turbid and have different trophic structure when compared to the natural coastal lakes that occur in the humid eastern coast of the State. To test this hypothesis, 10 natural lakes and 8 artificial lakes with about 100 ha were sampled between September and November 2005 for the determination of some limnological variables and the abundance of the main fish species, which were grouped in three trophic guilds: facultative piscivores, facultative planktivores and omnivores. The results show that the artificial lakes had significantly higher concentrations of total nitrogen, total phosphorus, chlorophyll a , total and volatile suspended solids than the natural lakes. Results also show that the values of pH, total alkalinity, electric conductivity, turbidity as well as the coefficient of vertical attenuation of light were significantly higher in the artificial lakes than in the natural lakes. In the artificial lakes, the abundance of facultative planktivores was significantly higher, while the abundance of facultative piscivores significantly lower than in the natural lakes. There was no significant difference in the abundance of omnivorous fish between the two types of lakes. These results suggest that the increase in turbidity together with the other changes in the water quality of the artificial lakes, modifies the trophic structure of the fish communities reducing the importance of piscivores and the length of the food chains