1 resultado para Power flow algorithm
em Repositório Institucional da Universidade Federal do Rio Grande do Norte
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- Aston University Research Archive (25)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (219)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (14)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (34)
- Cochin University of Science & Technology (CUSAT), India (9)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (17)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (12)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (14)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (30)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Greenwich Academic Literature Archive - UK (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Instituto Politécnico de Viseu (4)
- Instituto Politécnico do Porto, Portugal (47)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (10)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (17)
- Repositório da Produção Científica e Intelectual da Unicamp (12)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (253)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Scielo Saúde Pública - SP (6)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (6)
- Universidad Politécnica de Madrid (35)
- Universidade Complutense de Madrid (2)
- Universidade de Madeira (1)
- Universidade do Minho (3)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universidade Metodista de São Paulo (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (13)
- Université de Montréal, Canada (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (29)
- University of Washington (4)
Resumo:
The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.