3 resultados para Parietal cortex
em Repositório Institucional da Universidade Federal do Rio Grande do Norte
Resumo:
The morphogen Sonic Hedgehog (SHH) plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.