2 resultados para NORMAL HUMAN FIBROBLASTS

em Repositório Institucional da Universidade Federal do Rio Grande do Norte


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, a BCR-ABL expressing human chronic myelogenous leukaemia cell line (K562) was used to investigate the antitumoral potential of a novel lectin (CvL) purified from the marine sponge Cliona varians. CvL inhibited the growth of K562 cells with an IC50 value of 70 g/ml, but was ineffective to normal human peripheral blood lymphocytes in the same range of concentrations tested (180 g/ml). Cell death occurred after 72 h of exposure to the lectin and with sign of apoptosis as analysed by DAPI staining. Investigation of the possible effectors of this process showed that cell death occurred in the presence of Bcl-2 and Bax expression, and involved a caspase-independent pathway. Confocal fluorescence microscopy indicated a major role for the lysosomal protease cathepsin B in mediating cell death. Accordingly, pre-incubation of K562 cells with the cathepsin inhibitor L-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64) abolished the cytotoxic effect of CvL. Furthermore, we found upregulation of tumor necrosis factor receptor 1 (TNFR1) and down-modulation of p65 subunit of nuclear factor kappa B (NFB) expression in CvL-treated cells. These effects were accompanied by increased levels of p21 and downmodulation of pRb, suggesting that CvL is capable of cell cycle arrest. Collectively, these findings suggest that cathepsin B acts as death mediator in CvL-induced cytotoxicity possibly in a still uncharacterized connection with the membrane death receptor pathway

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug