4 resultados para MYENTERIC PLEXUS
em Repositório Institucional da Universidade Federal do Rio Grande do Norte
Resumo:
The biodistribution of sodium pertechnetate, the most used radiopharmaceutical in nuclear medicine, has not been studied in details after bariatric surgery. The objective was to investigate the effect of Roux-en-Y gastric bypass (RYGB) on biodistribution of sodium pertechnetate (Na99mTc-) in organs and tissues of rats. Methods: Twelve rats were randomly divided into two groups of 6 animals each. The RYGB group rats were submitted to the Roux-en-Y gastric bypass and the control group rats were not operated. After 15 days, all rats were injected with 0.1mL of Na99mTc- via orbital plexus with average radioactivity of 0.66 MBq. After 30 minutes, liver, stomach, thyroid, heart, lung, kidney and femur samples were harvested, weighed and percentage of radioactivity per gram (%ATI/g) of each organ was determined by gama counter Wizard Perkin-Elmer. We applied the Student t test for statistical analysis, considering p<0.05 as significant. Results: Significant reduction in mean %ATI/g was observed in the liver, stomach and femur in the RYGB group animals, compared with the control group rats (p<0.05). In other organs no significant difference in %ATI/g was observed between the two groups. Conclusion: This work contributes to the knowledge that the bariatric surgery RYGB modifies the pattern of biodistribution of Na99mTc
Resumo:
Purpose: Many patients with metastatic bone disease have to use radiopharmaceuticals associated with chemotherapy to relieve bone pain. The aim of this study was to assess the influence of docetaxel on the biodistribution of samarium-153-EDTMP in bones and other organs of rats. Methods: Wistar male rats were randomly allocated into 2 groups of 6 rats each. The DS (docetaxel/samarium) group received docetaxel (15 mg/kg) intraperitoneally in two cycles 11 days apart. The S (samarium/control) group rats were not treated with docetaxel. Nine days after chemotherapy, all the rats were injected with 0.1ml of samarium-153-EDTMP via orbital plexus (25μCi). After 2 hours, the animals were killed and samples of the brain, thyroid, lung, heart, stomach, colon, liver, kidney and both femurs were removed. The percentage radioactivity of each sample (% ATI/g) was determined in an automatic gamma-counter (Wizard-1470, Perkin-Elmer, Finland). Results: On the 9th day after the administration of the 2nd chemotherapy cycle, the rats had a significant weight loss (314.50±22.09g) compared (p<0.5) to pre-treatment weight (353.66± 22.8). The % ATI/g in the samples of rats treated with samarium-153-EDTMP had a significant reduction in the right femur, left femur, kidney, liver and lungs of animals treated with docetaxel, compared to the control rats. Conclusion: The combination of docetaxel and samarium-153-EDTMP was associated with a lower response rate in the biodistribution of the radiopharmaceutical to targeted tissues. Further investigation into the impact of docetaxel on biodistribution of samarium-153-EDTMP would complement the findings of this study
Resumo:
Drugs and surgery can interfere with the biodistribution of radiopharmaceuticals and data about the effect of splenectomy on the metabolism of phytate-Tc-99m are scarce. This study aimed at evaluating the interference of splenectomy on phytate-Tc-99m biodistribution and liver function in rats. The SP group rats (n=6) underwent splenectomy. In group C (control) the animals were not operated on. After 15 days, all rats were injected with 0.1mL of Tc-99m-phytate via orbital plexus (0.66MBq). After 30 minutes, liver samples were harvested, weighed and the percentage of radioactivity per gram (%ATI-g) was determined by a Wizard Perkin-Elme gama counter. The ATI%-g in splenectomized rats (0.99±0.02) was significantly higher than in controls (0.4±0.02), (p=0.034). ALT, AST and HDL were significantly lower in SP rats (p= 0.001) and leukocytosis was observed in SP rats. In conclusion, splenectomy in rats changed the hepatic biodistribution of Tc-99m-phytate and liver enzimatic activity
Resumo:
To evaluate the biodistribution of sodium pertecnetate (Na99mTcO4) in organs and tissues, the morphometry of remnant intestinal mucosa and ponderal evolution in rats subjected to massive resection of the small intestine. Methods: Twenty-one Wistar rats were randomly divided into three groups of 7 animals each. The short bowel (SB) group was subjected to massive resection of the small intestine; the control group (C) rats were not operated on, and soft intestinal handling was performed in sham rats. The animals were weighed weekly. On the 30th postoperative day, 0.l mL of Na99mTcO4, with mean activity of 0.66 MBq was injected intravenously into the orbital plexus. After 30 minutes, the rats were killed with an overdose of anesthetic, and fragments of the liver, spleen, pancreas, stomach, duodenum, small intestine, thyroid, lung, heart, kidney, bladder, muscle, femur and brain were harvested. The biopsies were washed with 0.9% NaCl.,The radioactivity was counted using Gama Counter WizardTM 1470, PerkinElmer. The percentage of radioactivity per gram of tissue (%ATI-g) was calculated. Biopsies of the remaining jejunum were analysed by HE staining to obtain mucosal thickness. Analysis of variance (ANOVA) and the Tukey test for multiple comparisons were used, considering p<0.05 as signifi cant. Results: There were no signifi cant differences in %ATI-g of the Na99mTcO4 in the organs of the groups studied (p>0.05). An increase in the weight of the SB rats was observed after the second postoperative week. The jejunal mucosal thickness of the SB rats was signifi cantly greater than that of C and sham rats (p<0.05). Conclusion: In rats with experimentally-produced short bowel syndrome, an adaptive response by the intestinal mucosa reduced weight loss. The biodistribution of Na99mTcO4 was not affected by massive intestinal resection, suggesting that short bowel syndrome is not the cause of misleading interpretation, if an examination using this radiopharmaceutical is indicated