4 resultados para Método de aplicação

em Repositório Institucional da Universidade Federal do Rio Grande do Norte


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Avaliar efeitos do uso tópico do mel da abelha silvestre Melipona subnitida na evolução de feridas infectadas de pele. Método: Ratos Wistar foram distribuídos aleatoriamente em grupos de 6, anestesiados com tiopental sódico 20mg/Kg IP e cetamina 30mg/Kg IM e submetidos a exérese de segmento de 1 cm2 de pele total do dorso. Os ratos do grupo C (não infectado) foram tratados com solução salina sobre a ferida diariamente e no grupo MEL (não infectado) as feridas foram tratadas com mel uma vez por dia. Nos grupos C/I e MEL/I as feridas foram inoculadas com solução polimicrobiana. Culturas foram feitas 24 horas após. Caracterizada a infecção, as feridas foram tratadas com solução salina e mel, respectivamente. No terceiro dia de tratamento foi feita nova cultura. Após epitelização foi contado o tempo de cicatrização e as feridas foram biopsiadas para histopatologia e dosagem de TNF-a, IL-1b e IL-6 no tecido. Resultados: O tempo médio de cicatrização do grupo MEL/I foi menor que nos demais grupos(P<0,05). Verificou-se que a densidade de colágeno, leucócitos, fibroblastos e dosagem de citocinas (especialmente TNF) foi maior no grupo infectado e tratado com mel que nos demais grupos. Houve significante redução de bactérias Gram-negativas e positivas nas feridas após o tratamento com mel. Conclusão: O uso tópico de mel de Melipona subnitida em feridas infectadas da pele de ratos estimulou a resposta imunológica, reduziu a infecção e o tempo de cicatrização

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural ventilation is an efficient bioclimatic strategy, one that provides thermal comfort, healthful and cooling to the edification. However, the disregard for quality environment, the uncertainties involved in the phenomenon and the popularization of artificial climate systems are held as an excuse for those who neglect the benefits of passive cooling. The unfamiliarity with the concept may be lessened if ventilation is observed in every step of the project, especially in the initial phase in which decisions bear a great impact in the construction process. The tools available in order to quantify the impact of projected decisions consist basically of the renovation rate calculations or computer simulations of fluids, commonly dubbed CFD, which stands for Computational Fluid Dynamics , both somewhat apart from the project s execution and unable to adapt for use in parametric studies. Thus, we chose to verify, through computer simulation, the representativeness of the results with a method of simplified air reconditioning rate calculation, as well as making it more compatible with the questions relevant to the first phases of the project s process. The case object consists of a model resulting from the recommendations of the Código de Obras de Natal/ RN, customized according to the NBR 15220. The study has shown the complexity in aggregating a CFD tool to the process and the need for a method capable of generating data at the compatible rate to the flow of ideas and are discarded during the project s development. At the end of our study, we discuss the necessary concessions for the realization of simulations, the applicability and the limitations of both the tools used and the method adopted, as well as the representativeness of the results obtained

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural air ventilation is the most import passive strategy to provide thermal comfort in hot and humid climates and a significant low energy strategy. However, the natural ventilated building requires more attention with the architectural design than a conventional building with air conditioning systems, and the results are less reliable. Therefore, this thesis focuses on softwares and methods to predict the natural ventilation performance from the point of view of the architect, with limited resource and knowledge of fluid mechanics. A typical prefabricated building was modelled due to its simplified geometry, low cost and occurrence at the local campus. Firstly, the study emphasized the use of computational fluid dynamics (CFD) software, to simulate the air flow outside and inside the building. A series of approaches were developed to make the simulations possible, compromising the results fidelity. Secondly, the results of CFD simulations were used as the input of an energy tool, to simulate the thermal performance under different rates of air renew. Thirdly, the results of temperature were assessed in terms of thermal comfort. Complementary simulations were carried out to detail the analyses. The results show the potentialities of these tools. However the discussions concerning the simplifications of the approaches, the limitations of the tools and the level of knowledge of the average architect are the major contribution of this study